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Motivation 

•  Gradient-based features: widely used in image processing 
–  Motion tracking [Takacs et al., 2013] [Skrypnyk and Lowe, 2004] 
–  Image-based retrieval [Duan et al., 2016] [Tao et al., 2014] 
–  Action recognition [Wang et al., 2013] 
–  Object detection [Dalal and Trigs, 2005] [Felzenszwalb et al., 2010] 
–  Image classification [Lazebnik et al., 2006] [Yan et al., 2012] 
 

•  Usual pipeline: 

keypoint detection input image 
descriptor extraction using 

canonical coordinate system 
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Motivation 

•  Keypoint detection is sensitive to imaging parameters 
–  Empirical studies evaluate robustness of local descriptors to noisy 

keypoint detection [Mikolajczyk and Schmid, 2005] 

•  Our focus:  

 Derive analytical model of local descriptor similarity due to 
 keypoint detection uncertainty 

•  Several applications: 
–  Image retrieval: assess robustness of given descriptor to detection errors 
–  Image classification: evaluate grid spacing for dense feature extraction 
–  Motion tracking: define required accuracy of a given tracker 
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Contributions 

•  First work that models analytically local descriptor similarity as 
a function of keypoint detection errors 

•  Main results: 

Closed-form expression for Lp distance, for 
general detection errors 

Components of L2 distance are approximately 
Gamma-distributed, for translation-only errors 

Closed-form expression for expected L2 
distance, for translation-only errors 
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Outline 

•  Problem Formulation 
•  General Model 
•  Detailed Analysis: Translation Errors Only 

•  Comparison with Experimental Results 
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Problem Formulation 
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2. PROBLEM FORMULATION

Referring to Fig. ??, consider a ground truth patch A and define A
n

as
its n-th spatial bin. Consider a local image descriptor with N spatial
bins and D gradient orientation bins. For example, for SIFT [?],
N = 16 and D = 8. Denote the normalized histogram of gradient
orientations of A

n

as a
n

, such that a
n

= [a
n

[1], a
n

[2],�, a
n

[D]],
and a

n

[d] is the proportion of area in A
n

where gradient orientations
are quantized to orientation d:

a
n

[d] = �Ad
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n

� (11)

where �A
n

� denotes the area of A
n

, and Ad

n

is the region within A
n

where gradient orientations fall into bin d (�Ad

n

� ≤ �A
n

�).
Define f

A

as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f

A

=[a1;a2;�;a
N

]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
(�x and �y), orientation (�✓) and scale (�s) are defined as:

�x = x
B

− x
A

(12a)
�y = y

B

− y
A

(12b)
�✓ = ✓

B

− ✓
A

(12c)

�s = s
B

s
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− 1 (12d)

where x
A

, y
A

, ✓
A

, s
A

correspond to the 2D locations, orientation and
scale for patch A, and similarly x

B

, y
B

, ✓
B

, s
B

for patch B.
Consider the problem of comparing the descriptors f

A

and f
B

.
We use a distortion measure based on a L

p

-norm, such as �f
A

−
f
B

�p
p

= ∑N

n=1∑D

d=1 �an

[d]−b
n

[d]�p. Our objective is to characterize
how the errors �x, �y, �✓, and �s give rise to a distortion �f

A

−
f
B

�p
p

. Our goal is to capture the most important effects for descriptors
that are based on histogram of gradients – so we do not take into
account some optimizations that are used in practice, such as Gaussian
weighting, gradient magnitude weighting, L2 normalization, etc.

3. MODELING DESCRIPTOR DISTANCE

Let us denote the overlap region of the spatial bins A
n

and B
n

as O
n

,
and the non-overlap regions as A′

n

and B′
n

. A normalized histogram
a
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can be decomposed into a contribution from O
n

and a contribution
from A′
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n

and a

′
n

, respectively. For each component
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Problem Formulation 
•  Histogram of gradient orientations:  
 

•  Local descriptor: 

•  We are interested in modeling: 
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bins and D gradient orientation bins. For example, for SIFT [?],
N = 16 and D = 8. Denote the normalized histogram of gradient
orientations of A
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and a
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[d] is the proportion of area in A
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where �A
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, and Ad

n

is the region within A
n

where gradient orientations fall into bin d (�Ad
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�).
Define f

A

as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f

A

=[a1;a2;�;a
N

]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
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for patch B.
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and f
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that are based on histogram of gradients – so we do not take into
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Referring to Fig. ??, consider a ground truth patch A and define A
n

as
its n-th spatial bin. Consider a local image descriptor with N spatial
bins and D gradient orientation bins. For example, for SIFT [?],
N = 16 and D = 8. Denote the normalized histogram of gradient
orientations of A
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, such that a
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where �A
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� denotes the area of A
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is the region within A
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Define f

A

as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f

A

=[a1;a2;�;aN

]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
(�x and �y), orientation (�✓) and scale (�s) are defined as:
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where x
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Consider the problem of comparing the descriptors f

A

and f
B

.
We use a distortion measure based on a L

p

-norm, such as �f
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how the errors �x, �y, �✓, and �s give rise to a distortion �f
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−
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. Our goal is to capture the most important effects for descriptors
that are based on histogram of gradients – so we do not take into
account some optimizations that are used in practice, such as Gaussian
weighting, gradient magnitude weighting, L2 normalization, etc.
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2. PROBLEM FORMULATION

Referring to Fig. ??, consider a ground truth patch A and define A
n

as
its n-th spatial bin. Consider a local image descriptor with N spatial
bins and D gradient orientation bins. For example, for SIFT [?],
N = 16 and D = 8. Denote the normalized histogram of gradient
orientations of A
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as a
n

, such that a
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= [a
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and a
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[d] is the proportion of area in A
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where gradient orientations
are quantized to orientation d:
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where �A
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� denotes the area of A
n

, and Ad
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is the region within A
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where gradient orientations fall into bin d (�Ad
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� ≤ �A
n

�).
Define f

A

as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f

A

=[a1;a2;�;aN

]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
(�x and �y), orientation (�✓) and scale (�s) are defined as:
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2. PROBLEM FORMULATION

Referring to Fig. ??, consider a ground truth patch A and define A
n

as
its n-th spatial bin. Consider a local image descriptor with N spatial
bins and D gradient orientation bins. For example, for SIFT [?],
N = 16 and D = 8. Denote the normalized histogram of gradient
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Define f

A

as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f

A

=[a1;a2;�;aN

]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
(�x and �y), orientation (�✓) and scale (�s) are defined as:

�x = x
B

− x
A

(15a)
�y = y

B

− y
A

(15b)
�✓ = ✓

B

− ✓
A

(15c)

�s = s
B

s
A

− 1 (15d)

where x
A

, y
A

, ✓
A

, s
A

correspond to the 2D locations, orientation and
scale for patch A, and similarly x

B

, y
B

, ✓
B

, s
B

for patch B.
Consider the problem of comparing the descriptors f

A

and f
B

.
We use a distortion measure based on a L

p

-norm, such as �f
A

−
f
B

�p
p

= ∑N

n=1∑D

d=1 �an

[d]−b
n

[d]�p. Our objective is to characterize
how the errors �x, �y, �✓, and �s give rise to a distortion �f

A

−
f
B

�p
p

. Our goal is to capture the most important effects for descriptors
that are based on histogram of gradients – so we do not take into

(normalized per 
spatial bin) 

1" 2" 3" 4"

5" 6" 7" 8"

9" 10" 11" 12"

13" 14" 15" 16"

SIFT: 
N=16 

SIFT: 
D=8 

1. EQS TO USE

a
n

[d] = ↵
n

oA
n

[d] + (1 − ↵
n

)a′
n

[d] (1a)

b
n

[d] = �
n

oB
n

[d] + (1 − �
n

)b′
n

[d] (1b)

D�
d=1

a
n

[d] = 1 (2)

n = 1, . . . ,N (3)

d = 1, . . . ,D (4)

↵
n

= 0.3 (5a)
1 − ↵

n

= 0.7 (5b)

oA
n

[1] = 0.5 (5c)

a′
n

[1] = 0.6 (5d)
prop[women] = 0.3 × 0.5 + 0.7 × 0.6 (5e)

= 0.57 (5f)
a
n

[1] = 0.3 × 0.5 + 0.7 × 0.6 (5g)
= 0.57 (5h)

b
n

[1] (5i)

b
n

[d] = �
n

oB
n

[d] + (1 − �
n

)b′
n

[d] (6a)

�f
A

− f
B

�p
p

= N�
n=1

D�
d=1
�(1 − �

n

)(a′
n

[d] − b′
n

[d])
+ �

n

(oA
n

[d] − oB
n

[d])
+ �

n

(2�s +�s2)(oA
n

[d] − a′
n

[d])�p (7)

�f
A

− f
B

�p
p

= N�
n=1

D�
d=1
�(

(1 − �
n

)(a′
n

[d] − b′
n

[d])
+ �

n

(oA
n

[d] − oB
n

[d])
+ �

n

(2�s +�s2)(oA
n

[d] − a′
n

[d])
)�p (8)

�s ≈ 0
�✓ ≈ 0

z
d,n

= a
n

[d] − b
n

[d] = (1 − �
n

)(a′
n

[d] − b′
n

[d]) (9)

�f
A

− f
B

�22 = N�
n=1

D�
d=1
�(1 − �

n

)(a′
n

[d] − b′
n

[d])�2

= N�
n=1

D�
d=1
(1 − �

n

)2(a′
n

[d] − b′
n

[d])2 (10)

E[�f
A

− f
B

�22] = N�
n=1

D�
d=1

E[(1 − �
n

)2(a′
n

[d] − b′
n

[d])2] (11)

a′
n

[d] = �A
′
d

n

��A′
n

� = 1�A′
n

� �
x,y[x,y] ∈A′n

g
d

[x, y] (12)

E[(1−�
n

)2(a′
n

[d]−b′
n

[d])2��v] = (1−�
n

)2E[(a′
n

[d]−b′
n

[d])2]

a′
n

[d] = �A
′
d

n

��A′
n

� = 1�A′
n

� �
x,y[x,y] ∈A′n

g
d

[x, y] (13)

g
d

[x, y] =
�v1 = [1,1]
�v2 = [−1,3]
�v3 = [4,−4]
dummy−U

2
≤�x,�y ≤ U

2
U1 = 2
U2 = 4
U3 = 8
f
A

= [a1[1], a1[2], . . . , a1[D], . . . , aN

[D]].
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Referring to Fig. ??, consider a ground truth patch A and define A
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as
its n-th spatial bin. Consider a local image descriptor with N spatial
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Define f
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]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
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Consider the problem of comparing the descriptors f
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and f
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.
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-norm, such as �f
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−
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= ∑N

n=1∑D

d=1 �an

[d]−b
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[d]�p. Our objective is to characterize
how the errors �x, �y, �✓, and �s give rise to a distortion �f

A

−
f
B
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p

. Our goal is to capture the most important effects for descriptors
that are based on histogram of gradients – so we do not take into
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[d]�p. Our objective is to characterize
how the errors �x, �y, �✓, and �s give rise to a distortion �f
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−
f
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. Our goal is to capture the most important effects for descriptors
that are based on histogram of gradients – so we do not take into
account some optimizations that are used in practice, such as Gaussian
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3. MODELING DESCRIPTOR DISTANCE

Let us denote the overlap region of the spatial bins A
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and B
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. A normalized histogram
a

n

can be decomposed into a contribution from O
n

and a contribution
from A′

n

, denoted as o
n

and a

′
n

, respectively. For each component
of a

n

and b

n

:

a
n

[d] = ↵
n

oA
n

[d] + (1 − ↵
n

)a′
n

[d] (8a)

b
n

[d] = �
n

oB
n

[d] + (1 − �
n

)b′
n

[d] (8b)

where o

A

n

and o

B

n

are histograms calculated from O
n

with respect to
the orientations from patches A and B, respectively, and ↵

n

and �
n

are the proportions of overlap areas for A
n

and B
n

:

↵
n

= �On

��A
n

� = �O
n

��O
n

� + �A′
n

� (9a)

�
n

= �On

��B
n

� = �O
n

��O
n

� + �B′
n

� (9b)

As in Fig. ??, �A
n

� = wh, and �B
n

� = wh(1 + �s)2. Therefore,
↵
n

= (1 +�s)2�
n

.
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Thus, the L
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distance of descriptors f
A

and f
B

can be expressed as a
function of three terms: (a) Difference of histograms of non-overlap
regions (a′
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n

[d]), magnified by the proportion of non-overlap
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General Model: Descriptor Distance 
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A

=[a1;a2;�;a
N

]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
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as
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N = 16 and D = 8. Denote the normalized histogram of gradient
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Translation Errors Only: Simplification 

General expression from before: 
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Translation Errors Only: Simplification 
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2. PROBLEM FORMULATION

Referring to Fig. ??, consider a ground truth patch A and define A
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as
its n-th spatial bin. Consider a local image descriptor with N spatial
bins and D gradient orientation bins. For example, for SIFT [?],
N = 16 and D = 8. Denote the normalized histogram of gradient
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Define f
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as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f
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=[a1;a2;�;a
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]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
(�x and �y), orientation (�✓) and scale (�s) are defined as:
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Referring to Fig. ??, consider a ground truth patch A and define A
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2. PROBLEM FORMULATION

Referring to Fig. ??, consider a ground truth patch A and define A
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as
its n-th spatial bin. Consider a local image descriptor with N spatial
bins and D gradient orientation bins. For example, for SIFT [?],
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Define f
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as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f
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by concatenating the histograms for each spatial bin, i.e., f

A

=[a1;a2;�;a
N

]. Similar notation is used for patch B, which is
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Models for Different Scenarios 

•  Fixed translation errors 
Obtained by using derivations and assumptions from previous slides 

•  Uniformly-distributed translation errors 

Use iterated expectation, given results with fixed translation errors 

•  In both cases, we obtain closed-form expressions 
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Outline 

•  Problem Formulation 
•  General Model 
•  Detailed Analysis: Translation Errors Only 

•  Comparison with Experimental Results 



20 Araujo et al., Modeling the Impact of Keypoint Detection Errors in Local Descriptor Similarity 

Experimental Setup 

•  Two datasets, with two different keypoint detectors 
–  Stanford Mobile Visual Search (SMVS) dataset [Chandrasekhar et al., 2011] 

•  65k keypoints extracted with DoG detector (as in SIFT) 

–  CNN2h dataset [Araujo et al., 2014] 
•  78k keypoints extracted with TCD detector [Makar et al., 2014] 

–  Datasets divided into train/test splits 

•  4x4 spatial bins, 8 gradient orientations (as in SIFT) 
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Experimental Setup 
•  Experiments with fixed 

translation errors 
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2. PROBLEM FORMULATION

Referring to Fig. ??, consider a ground truth patch A and define A
n

as
its n-th spatial bin. Consider a local image descriptor with N spatial
bins and D gradient orientation bins. For example, for SIFT [?],
N = 16 and D = 8. Denote the normalized histogram of gradient
orientations of A

n

as a
n

, such that a
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and a
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[d] is the proportion of area in A
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where gradient orientations
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where �A
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� denotes the area of A
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, and Ad
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is the region within A
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where gradient orientations fall into bin d (�Ad

n

� ≤ �A
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�).
Define f

A

as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f

A

=[a1;a2;�;aN

]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
(�x and �y), orientation (�✓) and scale (�s) are defined as:
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for patch B.
Consider the problem of comparing the descriptors f
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and f
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2. PROBLEM FORMULATION

Referring to Fig. ??, consider a ground truth patch A and define A
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as
its n-th spatial bin. Consider a local image descriptor with N spatial
bins and D gradient orientation bins. For example, for SIFT [?],
N = 16 and D = 8. Denote the normalized histogram of gradient
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Define f

A

as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f
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=[a1;a2;�;a
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]. Similar notation is used for patch B, which is

•  We compare empirical versus estimated expected values of 
descriptor distances 

•  Accuracy of estimates given by:   Acc = 1 – RelativeError 
    (higher is better) 
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Experiments: Fixed Translation Error 

•  We use three different translations: 

•  Results: 
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2. PROBLEM FORMULATION

Referring to Fig. ??, consider a ground truth patch A and define A
n

as
its n-th spatial bin. Consider a local image descriptor with N spatial
bins and D gradient orientation bins. For example, for SIFT [?],
N = 16 and D = 8. Denote the normalized histogram of gradient
orientations of A

n

as a
n

, such that a
n

= [a
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and a
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[d] is the proportion of area in A
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where gradient orientations
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where �A
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� denotes the area of A
n

, and Ad
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is the region within A
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where gradient orientations fall into bin d (�Ad

n

� ≤ �A
n

�).
Define f

A

as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f

A

=[a1;a2;�;aN

]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
(�x and �y), orientation (�✓) and scale (�s) are defined as:
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scale for patch A, and similarly x
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. Our goal is to capture the most important effects for descriptors
that are based on histogram of gradients – so we do not take into
account some optimizations that are used in practice, such as Gaussian
weighting, gradient magnitude weighting, L2 normalization, etc.
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Experiments: Uniform Translation Errors 

•  We use three different distributions: 

          with 
•  Results: 
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2. PROBLEM FORMULATION

Referring to Fig. ??, consider a ground truth patch A and define A
n

as
its n-th spatial bin. Consider a local image descriptor with N spatial
bins and D gradient orientation bins. For example, for SIFT [?],
N = 16 and D = 8. Denote the normalized histogram of gradient
orientations of A
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Define f

A

as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f

A

=[a1;a2;�;aN

]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
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. Our goal is to capture the most important effects for descriptors
that are based on histogram of gradients – so we do not take into
account some optimizations that are used in practice, such as Gaussian
weighting, gradient magnitude weighting, L2 normalization, etc.
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Define f
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as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f
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]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
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Conclusions 

•  First work to model analytically descriptor similarity as a 
function of keypoint detection errors 

•  We develop expression for Lp distance based on general 
translation, orientation and scale detection errors 

•  Proposed stationary model explains most of the variation of 
descriptor distance when translation errors dominate 

•  Framework can be modified to analyze other binning 
configurations 
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