Modeling the Impact of Keypoint Detection Errors on Local Descriptor Similarity

André Araujo, H. Lakshman, R. Angst, B. Girod

Department of Electrical Engineering

Stanford University

Motivation

- Gradient-based features: widely used in image processing
- Motion tracking [Takacs et al., 2013] [Skrypnyk and Lowe, 2004]
- Image-based retrieval [Duan et al., 2016] [Tao et al., 2014]
- Action recognition [Wang et al., 2013]
- Object detection [Dalal and Trigs, 2005] [Felzenszwalb et al., 2010]
- Image classification [Lazebnik et al., 2006] [Yan et al., 2012]
- Usual pipeline:

input image

descriptor extraction using canonical coordinate system

Motivation

- Keypoint detection is sensitive to imaging parameters
- Empirical studies evaluate robustness of local descriptors to noisy keypoint detection [Mikolajczyk and Schmid, 2005]
- Our focus:

Derive analytical model of local descriptor similarity due to keypoint detection uncertainty

- Several applications:
- Image retrieval: assess robustness of given descriptor to detection errors
- Image classification: evaluate grid spacing for dense feature extraction
- Motion tracking: define required accuracy of a given tracker

Contributions

- First work that models analytically local descriptor similarity as a function of keypoint detection errors
- Main results:

Closed-form expression for L_{p} distance, for general detection errors

Components of L_{2} distance are approximately Gamma-distributed, for translation-only errors

Closed-form expression for expected L_{2} distance, for translation-only errors

Outline

- Problem Formulation
- General Model
- Detailed Analysis: Translation Errors Only
- Comparison with Experimental Results

Outline

- Problem Formulation
- General Model
- Detailed Analysis: Translation Errors Only - Comparison with Experimental Results

Problem Formulation

Problem Formulation

- Histogram of gradient orientations:

Spatial bins

$$
\sum_{d=1}^{D} a_{n}[d]=1 \quad \begin{gathered}
\text { (normalized per } \\
\text { spatial bin })
\end{gathered}
$$

$$
d=1, \ldots, D
$$

SIFT:	1	2	3	4
N=16	5	6	7	8
	9	10	11	12
13	14	15	16	

SIFT: 128-dim

- Local descriptor: $f_{A}=\left[a_{1}[1], a_{1}[2], \ldots, a_{1}[D], \ldots, a_{N}[D]\right]$
- We are interested in modeling: $\left\|f_{A}-f_{B}\right\|_{p}^{p}$

Outline

- Problem Formulation
- General Model
- Detailed Analysis: Translation Errors Only - Comparison with Experimental Results

Main result:

Closed-form expression for L_{p} distance, for general detection errors

General Model

- $A_{n} n$-th spatial bin of patch A
- $B_{n} \quad n$-th spatial bin of patch B
- O_{n} overlap region of A_{n} and B_{n}
- $B_{n}{ }^{\prime}$ non-overlap region of B_{n}

Proportion of overlap and non-overlap areas (sum to 1)

General Model: Descriptor Distance

Writing out a similar expression for A_{n} and rearranging terms, we obtain:

$$
\begin{aligned}
& \left\|f_{A}-f_{B}\right\|_{p}^{p}= \\
& \quad \sum_{n=1}^{N} \sum_{d=1}^{D}\left(1-\beta_{n}\right)\left(a_{n}^{\prime}[d]-b_{n}^{\prime}[d]\right)
\end{aligned}
$$

$$
\rightarrow \text { compares } A_{n}^{\prime} \text { and } B_{n}^{\prime}
$$

$$
+\beta_{n}\left(o_{n}^{A}[d]-o_{n}^{B}[d]\right)
$$

compares O_{n} (with A's \rightarrow and B's references)
$+\left.\beta_{n}\left(2 \Delta s+\Delta s^{2}\right)\left(o_{n}^{A}[d]-a_{n}^{\prime}[d]\right)\right|^{p} \rightarrow \begin{aligned} & \text { compares hist } \\ & \text { of } O_{n} \text { and } A_{n}^{\prime}\end{aligned}$

Outline

- Problem Formulation
- General Model
- Detailed Analysis: Translation Errors Only

Comparison with Experimental Results

Main result:

Closed-form expression for expected L_{2} distance, for translation-only errors

Translation Errors Only: Simplification

General expression from before:

$$
\begin{aligned}
& \left\|f_{A}-f_{B}\right\|_{p}^{p}= \\
& \quad \sum_{n=1}^{N} \sum_{d=1}^{D} \mid\left(1-\beta_{n}\right)\left(a_{n}^{\prime}[d]-b_{n}^{\prime}[d]\right)
\end{aligned}
$$

\rightarrow compares $A_{n}{ }^{\prime}$ and $B_{n}{ }^{\prime}$

$$
+\beta_{n}\left(o_{n}^{A}[d]-o_{n}^{B}[d]\right)
$$

compares O_{n} (with A's
\rightarrow and B's references)

$$
+\left.\beta_{n}\left(2 \Delta s+\Delta s^{2}\right)\left(o_{n}^{A}[d]-a_{n}^{\prime}[d]\right)\right|^{p} \rightarrow \begin{aligned}
& \text { compares hist } \\
& \text { of } O_{n} \text { and } A_{n}^{\prime}
\end{aligned}
$$

Translation Errors Only: Simplification

In this case: $\Delta \theta \approx 0, \Delta s \approx 0$

$$
\left\|f_{A}-f_{B}\right\|_{p}^{p}=
$$

$$
\sum_{n=1}^{N} \sum_{d=1}^{D} \frac{\left(1-\beta_{n}\right)\left(a_{n}^{\prime}[d]-b_{n}^{\prime}[d]\right)}{0}
$$

Translation Errors Only: Expected Value

Using $p=2$:

$$
\left\|f_{A}-f_{B}\right\|_{2}^{2}=\sum_{n=1}^{N} \sum_{d=1}^{D}\left|\left(1-\beta_{n}\right)\left(a_{n}^{\prime}[d]-b_{n}^{\prime}[d]\right)\right|^{2}
$$

We are interested in estimating the mean of such descriptor distance:

$$
\begin{gathered}
E\left[\left\|f_{A}-f_{B}\right\|_{2}^{2}\right]=\sum_{n=1}^{N} \sum_{d=1}^{D} \frac{\uparrow\left[\left|\left(1-\beta_{n}\right)\left(a_{n}^{\prime}[d]-b_{n}^{\prime}[d]\right)\right|^{2}\right]}{\uparrow} \underbrace{E}_{\text {key term }}
\end{gathered}
$$

Expressing Histogram Using Binary Masks

Define the binary mask:
d: orientation $\sum_{\text {bin }}^{g_{d}[x, y] \text { : position }}$

\rightarrow corresponds
to $d=1$
$g_{1}[x, y]$

0	0	0
1	0	0
1	1	0

$a_{n}[1]=\frac{1}{3}$

We can write:

$$
\begin{aligned}
& \qquad a_{n}[d]=\frac{1}{\# \text { pixels }} \sum_{x, y} g_{d}[x, y] \\
& \text { Normalize by } \\
& \text { number of } \\
& \text { pixels in region }
\end{aligned}
$$

Number of pixels with gradient quantized to d

Assumptions

Assumption 1: $a_{n}^{\prime}[d]$ and $b_{n}^{\prime}[d]$ are uncorrelated and identically distributed

Assumption 2: statistics of $g_{d}[x, y]$

- Option 1 (Strong): $g_{d}[x, y]$ is IID \longrightarrow M-IID
- Option 2 (Mild): $\quad g_{d}[x, y]$ is stationary $\rightarrow \mathrm{M}-\mathrm{S}$

Models for Different Scenarios

- Fixed translation errors

Obtained by using derivations and assumptions from previous slides

- Uniformly-distributed translation errors

Use iterated expectation, given results with fixed translation errors

- In both cases, we obtain closed-form expressions

Outline

- Problem Formulation
- General Model
- Detailed Analysis: Translation Errors Only
- Comparison with Experimental Results

Experimental Setup

- Two datasets, with two different keypoint detectors
- Stanford Mobile Visual Search (SMVS) dataset [Chandrasekhar et al., 2011]
- 65k keypoints extracted with DoG detector (as in SIFT)
- CNN2h dataset [Araujo et al., 2014]
- 78k keypoints extracted with TCD detector [Makar et al., 2014]
- Datasets divided into train/test splits
- 4×4 spatial bins, 8 gradient orientations (as in SIFT)

Experimental Setup

- Experiments with fixed translation errors $\boldsymbol{\Delta v}$
- Experiments with uniform translation errors

$$
-\frac{U}{2} \leq \boldsymbol{\Delta} \mathbf{v} \leq \frac{U}{2}
$$

- We compare empirical versus estimated expected values of descriptor distances
- Accuracy of estimates given by: Acc = 1 - RelativeError (higher is better)

Experiments: Fixed Translation Error

$$
\boldsymbol{\Delta} \mathbf{v}_{1}=[1,1]
$$

- We use three different translations:
$\boldsymbol{\Delta} \mathbf{v}_{2}=[-1,3]$
$\boldsymbol{\Delta} \mathbf{v}_{3}=[4,-4]$
- Results:

Experiments: Uniform Translation Errors

- We use three different distributions: $-\frac{U}{2} \leq \boldsymbol{\Delta} \mathbf{v} \leq \frac{U}{2}$
with $\quad U_{1}=2 \quad U_{2}=4 \quad U_{3}=8$
- Results:

Conclusions

- First work to model analytically descriptor similarity as a function of keypoint detection errors
- We develop expression for L_{p} distance based on general translation, orientation and scale detection errors
- Proposed stationary model explains most of the variation of descriptor distance when translation errors dominate
- Framework can be modified to analyze other binning configurations

Thank you! Questions?

André Araujo

http://stanford.edu/~afaraujo afaraujo@stanford.edu

