Google
 Detect-to-Retrieve: Efficient Regional Aggregation for Image Search

Marvin Teichmann*1, André Araujo*2, Menglong Zhu ${ }^{2}$, Jack Sim ${ }^{2}$

[[UNIVERSITY OF
 Large-Scale Image Retrieval

Codedaata: ithub.com/tensorflow/models/tree/master/research/delf
${ }^{1}$ University of Cambridge, UK ${ }^{2}$ Google AI
*Equal contribution

Query
Challenges
Low performance on small objects

Indexing multiple regions is inefficient

No manually labeled landmark box datasets

Contributions
Regional representation using object detector

Regional Aggregated Matching Kernels

Google Landmark Boxes dataset

State-of-the-art results on Revisited Oxford/Paris datasets

Detect-to-Retrieve

Google Landmark Boxes

\checkmark 86k annotated boxes, from 15k landmarks
\checkmark One box per image capturing most prominent landmark
\checkmark Accurate detection with off-the-shelf architectures

https://www.kaggle.com/google/google-landmarks-dataset

Experimental Results

Ablation Study
\checkmark D2R improves upon no-detection baseline 2.31\% for regional search 3.65% for regional aggregation
\checkmark Regional aggregation > Regional Search Higher mAP, smaller index
\checkmark D2R $>$ uniform, generic detectors

State-of-the-Art Image Retrieval Results
Best results in Revisited datasets for all protocols and metrics \checkmark 9.3\% mAP improvement on Revisited Oxford (Hard)
$\checkmark 1.9 \%$ mAP improvement on Revisited Paris (Hard)

Method	Medium				Hard			
			${ }_{\text {mapar }}^{\text {Repain }}$		$\underbrace{\text { Rexien }}_{\text {Roxf }}$	$\underset{\text { map }}{\mathcal{R} O x f}+\underset{\text { mP@ } 1 \mathrm{M}}{\boldsymbol{\mathcal { R }}}$	${ }_{\text {mapar }}^{\text {Repent }}$	
		24.2 42.6 48.8 68.1	$\left\lvert\, \begin{array}{cc}58.0 \\ 6.3 & 91.6 \\ 97.9\end{array}\right.$	29.9 84.6 45.4 9.1	${ }^{177.1}$	9.4 11.9 19.0 29.4 1		8.4 19.1 19.6 1.9 1.9
(eatecol	(lan			(erser				
		45.0 46.8 79.6 79.6		$\begin{array}{ll}42.0 \\ 42.3 & 95.3 \\ 95.3\end{array}$	36.4 36.7 3.7 57.0	$\begin{array}{ll}25.7 & 4.1 \\ 26.9 & 45.3\end{array}$	34.5 35.5 88.6 80.7	16.5 63.4 16.8 65.3 18
		38		57	$\begin{array}{lll}41.1 & 59.7 \\ 431 & 6.74\end{array}$	312- ${ }^{-1}{ }^{-1}$		
DELF.AMM* (rcimpl)			$\left\lvert\, \begin{array}{ll}77.1 & 98.7\end{array}\right.$					
		$61.0{ }^{-0} 84.6$	\| $\left\lvert\, \begin{aligned} & 78.7 \\ & 80.7 \\ & 99.0 \\ & 99.1\end{aligned}\right.$	60.2 - 97.9	[47.6	$33.6{ }_{3}{ }^{5} \times 7$		29.9 - 82.4
	$\left\lvert\, \begin{array}{cc}68.9 \\ 71.9 & 90.9 \\ 90.3\end{array}\right.$				-46.6 48.5 46.7 6.7			
	76.9 ${ }_{\text {7 }}$	$64.0-88.7$		59.7 99.0.	${ }_{52.4}^{48.5}$	$38.1{ }^{-1} 61 . \overline{3}$		$29 . \overline{4} 83.9$

AP: 9.9\%

AP: 9.1\%
AP: 22.8\%

