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Large-Scale Video Retrieval Using Image Queries
André Araujo and Bernd Girod, Fellow, IEEE

Abstract—Retrieval of videos from large repositories using
image queries is important for many applications, such as brand
monitoring or content linking. We introduce a new retrieval
architecture, where the image query can be compared directly
to database videos – significantly improving retrieval scalability,
compared to a baseline system that searches the database on a
video frame level.

Matching an image to a video is an inherently asymmetric
problem. We propose an asymmetric comparison technique for
Fisher vectors and systematically explore query or database items
with varying amounts of clutter, showing the benefits of the
proposed technique. We then propose novel video descriptors
that can be compared directly to image descriptors. We start
by constructing Fisher vectors for video segments, by exploring
different aggregation techniques. For a database of lecture videos,
such methods obtain two orders of magnitude compression gain
with respect to a frame-based scheme, with no loss in retrieval
accuracy. Then, we consider the design of video descriptors which
combine Fisher embedding with hashing techniques, in a flexible
framework based on Bloom filters. Large-scale experiments using
three datasets show that this technique enables faster and more
memory-efficient retrieval, compared to a frame-based method,
with similar accuracy. The proposed techniques are further com-
pared against pre-trained convolutional neural network features,
outperforming them on three datasets by a substantial margin.

Index Terms—Bloom filter, Fisher vector, large-scale, query-
by-image, video retrieval.

I. INTRODUCTION

V ISUAL search applications have gained substantial popu-
larity recently. In its most common form, this technology

enables image-based querying against a database of images.
This is typically used to retrieve information associated with
specific objects from large databases, by comparing an image
of an object (the query image) against a database of reference
images. This technology has been widely used for recognition
of products [1], [2] and locations [3], [4] – and it has also
found its way to commercial applications [5], [6].

This work addresses a variant of the visual search problem,
where the query is an image, and the database is composed of
videos – such technology is relevant for numerous applications.
For example, for brand monitoring, a company might want to
find all appearances of specific logos or products in television
broadcasts. In another application, users might snap a picture
of a display to obtain information about the video that is being
watched. In online education, a user might want to find a
segment of a lecture video by using a specific slide as a query.

A naı̈ve solution to this problem would involve indexing
each database video frame independently – essentially treating
the database of videos as a database of images, where the
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Figure 1: Block diagram of a large-scale system which searches video databases
using image queries. First, a query image is represented as a descriptor, which
can be queried against the index of database video clips – to retrieve a short-list
of video clips. Then, two re-ranking stages narrow down the matches to the
frame level and the local feature level. In this work, our focus is on the stage
where the query image is compared directly against video clips in the database
– this is the key to enable an efficient retrieval process. This stage corresponds
to the part of the system which is highlighted in orange.

images would correspond to video frames. While such a simple
solution can potentially obtain high retrieval accuracy, storing
and comparing frame-based descriptors directly would entail
prohibitively large data and complexity requirements in a
large-scale setting. In contrast, our work introduces a new
retrieval architecture, where in a first stage the query image
can be directly compared to database video clips – significantly
improving the scalability of the retrieval process.

Fig. 1 presents the block diagram of a large-scale query-by-
image video retrieval system. It is very important to quickly
narrow down the search to a small set of video clips – which
will be re-ranked in subsequent stages. As depicted in Fig. 1,
the query image’s descriptor is initially compared to an index
that contains information on a video clip level. Then, the
most promising video clips are inspected at a frame level,
generating a ranking of video frames. Finally, the short-listed
frames are compared to the query image in terms of local
information, and a geometric verification step ensures that the
visual information of the query is geometrically consistent
with that of the retrieved database videos. The focus of this
work lies on the first retrieval stage (highlighted in orange):
the objective is to retrieve the most relevant video clips from
a large database, using a query image.

Image-based video retrieval presents two main challenges: (i)
Asymmetry: database videos comprise a temporal component,
while query images do not – how can a retrieval system
take this into account to design effective ways of comparing
images to videos? (ii) Temporal aggregation: how can we
combine information over seconds or minutes of video and
obtain compact signatures that can be directly compared against
images? These two challenges, which are clearly interrelated,
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are addressed by the main contributions of this work, described
in the following.

Contributions.
● Asymmetric comparison techniques for Fisher vectors:

We develop methods which test if an image is contained
in another image (or contained in a video), for retrieval
systems that use Fisher vectors. Existing Fisher vector
comparison techniques are not optimized for testing if one
image is contained in another, so we introduce a method
that addresses this important problem configuration. We
consider two different asymmetric problems which arise in
practice, where the query item might be contained in one
database item, or vice-versa. Experiments show substantial
performance gain by using the proposed techniques.

● Temporal aggregation using Fisher vectors: We develop
compact video representations using Fisher vectors. Tem-
poral aggregation is investigated for long video segments,
effectively removing temporal redundancy and enabling
large-scale retrieval. To the best of our knowledge, this
is the first work that addresses aggregation of visual
information over long video segments in order to match
against images.

● Temporal aggregation using Bloom filters: We develop
video representations which use Bloom filters to aggregate
visual information. This framework enables experimen-
tation with different aggregation configurations, where
visual information might be first aggregated per frame then
per video, or simply directly aggregated per video. This
technique achieves similar retrieval quality as a baseline
technique that indexes every video frame in the database,
while being much faster and more memory-efficient.

Initial results of our work have been presented in [7], [8]. In
this paper, we study in much more depth the asymmetric Fisher
vector (FV) comparison technique initially introduced in [7].
In particular, we introduce: (1) a new asymmetric comparison
technique (for the case where database may be included
in query), (2) the use of power normalization, with a new
interpretation, (3) extensive experiments to analyze the effect
of asymmetric comparison techniques with varying degrees
of asymmetry, for both binarized and non-binarized FVs, (4)
a new dataset to perform such experiments. We also provide
much more in-depth experimental results for the FV-based
temporal aggregation technique presented in [7], including: (1)
experiments for three different datasets, making use of the
asymmetric comparison techniques introduced in this work,
and (2) a comparison against recent CNN-based descriptors.
Compared to [8], this paper presents more comprehensive large-
scale experiments using Bloom filters, including detailed results
for different retrieval metrics as a function of the dataset size.

II. RELATED WORK

Visual search is the problem of indexing and querying visual
data, and we categorize its variants depending on the type of
query and database information. Most work in visual search
concerns the image-to-image (I2I) problem, where an image is
queried against a database of images [9], [10], [11], [12]. The
video-to-image (V2I) problem, relevant for augmented reality,
refers to searching a database of images using query videos

[13], [14]. Another variant is the case where the query is a
video and the database is composed of videos (V2V) – widely
used for content-based copy detection [15] and event retrieval
[16]. This work focuses on the image-to-video (I2V) problem:
a query image is used to find relevant database videos. We
review related I2V work in the rest of this section.

Early work in the I2V problem simply applied I2I techniques
for video search. In this case, the video database is simply
treated as an image database of video frames. Sivic and
Zisserman [17] introduced the bag-of-words (BoW) model by
using it to index a database of movies. In their work, each video
frame is indexed independently. Later, Sivic et al. [18] used
the temporal consistency of the video database to find different
views of the same object. This system enabled “object-level
matching”, i.e., when a user issues a query image presenting a
specific view, video segments with all different object views
might be retrieved.

The I2V research problem received attention with the
introduction of the TRECVID challenge task “Instance Search”
(INS), in 2010 [19]. In this task, given a query image set,
systems are expected to find all occurrences of the query in a
video database. The queries might represent a person, an object
or a location, and the query set comprises up to four images per
query. The query images are composed of regions-of-interest in
frames from the same dataset. Early high-performing systems,
by Le et al. [20], used color SIFT-based BoW with vocabulary
trees. This system indexed videos by considering each frame
independently. In follow-up work, Zhu and Satoh [21] showed
that the performance of the top INS 2011 system is mainly
due to the matching of the background between query and
database (instead of matching the query object). This shows a
limitation of the TRECVID dataset, whose query images are
collected from videos very similar to the videos in the test
dataset. The datasets introduced in our previous papers [22],
[23] addressed these issues.

Zhu and Satoh [21] introduced the aggregation of SIFT
descriptors into a single BoW for each shot. More recently,
Ballas et al. [24] and Zhu et al. [25] reported improved retrieval
performance when aggregating frame-based features per shot.
Zhu et al. [25] specifically evaluated different shot aggregation
methods. They concluded that the method which simply extracts
a BoW global descriptor from all SIFT features from keyframes
in the shot (average pooling) performs best. While previous
work considers temporal aggregation over shots, within which
there is high visual similarity between frames, in this work we
extend such form of temporal aggregation to much longer video
segments, which present varied visual contents. In subsequent
work, Zhu et al. [26] proposed a system that makes use of query-
adaptive asymmetrical dissimilarities, based on a BoW model,
achieving top performance in INS 2013. In this work, we extend
this idea to develop asymmetric comparison schemes for Fisher
vectors, and we further consider two different asymmetric
retrieval cases, with varying amounts of clutter.

III. ASYMMETRIC COMPARISONS FOR FISHER VECTORS

The Fisher vector (FV) [27] is a state-of-the-art global
descriptor for image retrieval. Using this technique, the
similarity of two images is measured by the similarity of two
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FVs, one for each image. In some visual retrieval problems,
however, one is not interested in measuring how similar the
query and database items are, but rather if the query image is
contained in a database image, or vice-versa. In this section,
we introduce comparison techniques to address this scenario.

A. Review of Fisher Vectors

Let X = {xt, t = 1 . . . T} represent a set of T d-dimensional
local descriptors, extracted from an image, and let uλ(X)

denote a probability distribution for sets of local descriptors,
with parameters λ. The Fisher kernel framework [28] describes
X using the gradient vector of the log-likelihood:

GXλ =
1

T
∇λ loguλ(X) (1)

The Fisher kernel between sets X and Y is defined as:

K(X,Y ) = (GXλ )
TF −1

λ GYλ (2)

where Fλ denotes the Fisher information matrix. This kernel
can be rewritten as an inner product between normalized
vectors: F −1

λ = (Lλ)
TLλ. The FV of X is thus defined as:

G
X
λ = LλG

X
λ (3)

In practice, uλ(X) is simplified by assuming i.i.d. local
descriptors. The distribution of xt, denoted uλ(xt), is modeled
by a Gaussian mixture model (GMM) with diagonal covariance
matrices [29]. Thus, uλ(X) = ∏

T
t=1 uλ(xt), with uλ(xt) =

∑
K
k=1wkuk(xt), where uk(xt) is a Gaussian density with mean

vector µk and diagonal covariance matrix σk. In this case,
λ = {wk, µk, σk, k = 1 . . .K}. Usually, only the gradients with
respect to {µk} are taken into account [27], and F −1

λ can be
approximated as a whitening operation. The d-dimensional
weighted gradient with respect to µk can be derived as:

G
X
k =

wXk
√
wk

σ−1k (µXk − µk) (4)

Defining γt(k) =
wkuk(xt)

∑K
j=1wjuj(xt) as the soft assignment of xt

to the k-th Gaussian, wXk and µXk can be written as:

wXk =
1

T

T

∑
t=1
γt(k) (5)

µXk =
∑
T
t=1 γt(k)xt

∑
T
t=1 γt(k)

(6)

wXk corresponds to the proportion of local descriptors soft-
assigned to Gaussian k, and µXk to the weighted local descriptor
vector corresponding to Gaussian k. The final vector GXλ is
the concatenation of the GXk vectors, with total number of
dimensions given by K × d.

FVs undergo two normalization steps. The first step reduces
the influence of bursty local features [30]. Perronnin et
al. [31] apply the transformation f(z) = sign (z) ∣z∣β to each
component of GXλ , where typically β = 0.5. This is known
as signed square rooting (SSR). Another option is intra-
normalization (IN), introduced by Arandjelović and Zisserman
[32], where each GXk is L2-normalized independently. In this
work, we experiment with both of these normalization methods.

The second step performs L2-normalization of the entire FV.
Thus, the comparison of FVs using the Euclidean distance
is equivalent to using the cosine similarity. We denote by
vXk the k-th d-dimensional normalized components of the FV
(also called the k-th FV residual). The full FV is simply the
concatenation of all vXk ’s, and we denote it by vX .

Binarized Fisher vectors (FV⋆). Perronnin et al. [31]
proposed to binarize FVs, in order to improve their scalability.
In this proposed scheme, named compressed Fisher vector
(CFV), each component of the FV is binarized depending on
its sign, and an extra bit per Gaussian is used to encode wXk :

v′Xk = sign (vXk ) (7)

bXk = {
1, if wXk > τw
0, otherwise (8)

where the sign (.) operation is applied component-wise. CFV’s
dimensionality is K × (d + 1) bits. This simple binarization
scheme has been shown to outperform more sophisticated
binarization approaches [31], [14].

Fisher vector comparison schemes. The commonly used
measure for comparing a query FV vQ and a database FV vD

is the cosine similarity:

1

∥vQ∥2 ∥v
D∥2

K

∑
k=1

(vQk )
T vDk (9)

where ∥.∥2 denotes the L2 norm. Note that in a retrieval
application, where the query image is compared to several
database images, the term 1

∥vQ∥2
can be omitted, since it is

independent of database images. When FVs are L2-normalized,
the term 1

∥vD∥2
can be omitted as well. Nevertheless, we include

these terms in the presented expressions for greater clarity.
For binarized FVs, the cosine similarity measure leads to:

1

∥v′Q∥2 ∥v
′D∥2

K

∑
k=1

(v′Qk )
T v′Dk =

1

Kd

K

∑
k=1

(d − 2Hk) (10)

where Hk denotes the Hamming distance between vectors v′Qk
and v′Dk . The term (d − 2Hk) is exactly equal to (v′Qk )T v′Dk .
Also, note that ∥v′Q∥

2
= ∥v′D∥

2
=
√
Kd. Equation (10) does

not approximate the original FV cosine similarity (9) well. A
better approximation of the FV inner product [31] is:

1
√

d∑
K
k=1 b

Q
k

√

d∑
K
k=1 b

D
k

K

∑
k=1

bQk b
D
k (d − 2Hk) (11)

In this case, if either bQk = 0 or bDk = 0, the score computation
for Gaussian k is omitted. We refer to this scheme as Symmetric
Gaussian Skipping (SGS), as it proposes to omit (skip) Gaussian
components based on a criterion that depends on both the
query’s and the database’s signatures. SGS was introduced in
[31] in order to approximate the inner product between the FVs
of Q and D: if either wQk or wDk is small, the FV inner product
for Gaussian k is close to zero and thus (11) approximates it
as zero. Duan et al. [33] further extend (11):

1

(d∑
K
k=1 b

Q
k )

α
(d∑

K
k=1 b

D
k )

α

K

∑
k=1

bQk b
D
k βHk

(d − 2Hk) (12)

where βHk
is a trained weight that depends on Hk, and α

defines a power law normalization.
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Figure 2: Simplified illustration of a common failure case when using FVs for
asymmetric problems. In this case, the query q is supposed to have a small
angle θ1 compared to the correct match database item m, and a large angle
θ2 compared to the incorrect match database item n. However, θ1 > θ2. But
the projected correct match database item m′ is closer to q than n (θ′1 < θ2)
– note that in this toy example the vectors q and n live on the x-y plane. This
shows that the database items should be compared to the query only based
on the type of visual information the query contains (in this case, the vectors
should be compared based on their projections to the x-y plane).

B. Asymmetric Fisher Vector Comparison Schemes

We introduce an asymmetric score computation for FVs,
which we name Asymmetric Gaussian Skipping (AGS), in
contrast to SGS. SGS was introduced in [31] such that the
binarized FV inner product would better approximate the
original FV inner product. In contrast, we introduce AGS
as a technique that can be used with both binarized and non-
binarized FVs.

1) Geometric Interpretation: Before introducing the specific
technique for asymmetric comparisons, we illustrate the prob-
lem with a toy example. We consider an asymmetric application
where the query item is mostly contained in a database item.
Remember that each d-sized chunk of a FV corresponds to
a different type of feature (since each chunk corresponds to
a Gaussian residual in descriptor space). Fig. 2 illustrates
the simplified setting in 3D where each component x, y, z
corresponds to a different type of feature. The vectors q, m
and n illustrate a query FV, a correct match database FV, and
an incorrect match database FV. We would expect the angle θ1
between q and m to be smaller than the angle θ2 between q
and n, but, in fact, θ1 > θ2. However, m’s projection to the x-y
plane, denoted m′, is closer to q than n, since θ′1 < θ2. This
is a common failure case if asymmetric comparisons are not
employed. It can be avoided if database items are compared
to the query based only on their projections to the x-y plane.
In other words, it is not important if a database item contains
visual information represented by other Gaussians (clutter),
since we are only interested in testing if it contains visual
information from the query item.

This technique assumes that the clutter (visual information
present in m but not in q) is mostly composed of features that
are different from the features present in q. In practice, this
assumption holds and the proposed technique works well.

2) Interpretation of Power Law Normalization: We intro-
duce a new interpretation for the power law normalization
from (12), which allows us to design improved asymmetric
comparison techniques. Consider the usage of SGS for FVs.

Adapting (9), the score between query and database FVs is:

1

(∑
K
k=1 b

Q
k ∥vQk ∥

2

2
)
α

(∑
K
k=1 b

D
k ∥vDk ∥

2

2
)
α

K

∑
k=1

bQk b
D
k (vQk )

T vDk

(13)
To the best of our knowledge, ours is the first work that proposes
SGS for non-binarized FVs: in previous work, SGS has only
been used with binarized FVs in order to better approximate
the original FV inner product. (13) can be rewritten as:

(
K

∑
k=1

bQk ∥vQk ∥
2

2
)

0.5−α

(
K

∑
k=1

bDk ∥vDk ∥
2

2
)

0.5−α

×
1

√

∑
K
k=1 b

Q
k ∥vQk ∥

2

2

√

∑
K
k=1 b

D
k ∥vDk ∥

2

2

K

∑
k=1

bQk b
D
k (vQk )

T vDk

∝ (
K

∑
k=1

bDk ∥vDk ∥
2

2
)

0.5−α

cos.sim(bQ, vQ, bD, vD) (14)

where cos.sim(bQ, vQ, bD, vD) denotes the cosine similarity
of vQ and vD, when residuals are selected by bQ and bD,
respectively. The last step in this derivation uses the fact that

(∑
K
k=1 b

Q
k ∥vQk ∥

2

2
)
0.5−α

is fixed when comparing the query to
any database image, so it simply multiplies the score of each
database image by the same factor. The final expression reveals
the effect of the power normalization α when using SGS: each

database image’s score is weighted by (∑
K
k=1 b

D
k ∥vDk ∥

2

2
)
0.5−α

.
When α = 0.5, the score reduces to the cosine similarity. When
α < 0.5, this weight boosts the score of database images
with many selected Gaussians. As each Gaussian represents
a different type of information, this weighting factor tends to
favor database images which contain diverse features. While
[34] proposed that 0 ≤ α ≤ 0.5, we explore even lower (i.e.,
negative) values of α, which can be helpful in some cases.

The interpretation of power law normalization as a weight
which boosts the score of database images with large variety of
features allows us to use such weighting in other comparison
techniques, such as the one introduced in the following.

3) Query-Based AGS (QAGS): For the case where our
retrieval goal is to test whether the query Q is contained in
the database item D, we introduce query-based AGS (QAGS).
For FVs, a simple QAGS score can be computed as:

1
√

∑
K
k=1 b

Q
k ∥vQk ∥

2

2

√

∑
K
k=1 b

Q
k ∥vDk ∥

2

2

K

∑
k=1

bQk (vQk )
T vDk (15)

where bQk is either zero or one, as in (8). This expression
computes the cosine similarity of the query and database vectors
projected to a subspace defined by the query image (as illus-
trated in Fig. 2): the residuals of both the query and database
images are selected by bQk , and the normalization factors take
into account solely the selected residuals. This is approximately
equivalent to extracting a FV that is parameterized by a GMM
that uses only the selected Gaussians.

Note how (15) effectively penalizes database items in some
important cases, while SGS (13) does not. For example,
consider the case where, for a Gaussian k, bQk = 1 and bDk = 0.
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Figure 3: Illustration of the datasets used for experiments of Sec. III. (a) Asym-QCD (query contained in database), (b) Asym-DCQ (database contained in
query). For both datasets, we evaluate different levels of asymmetry by using up to 40 clutter images.

In this case, the score (vQk )T vDk is likely low. The SGS
score (13) would hide this fact by ignoring this Gaussian
and decreasing the normalization factor. However, the QAGS
score (15) does not ignore this Gaussian and does not decrease
the normalization factor: the score for this Gaussian is taken
into account, and since it is low, the database item is penalized.

QAGS might also be beneficial even when the dataset does
not contain any asymmetry: the Gaussians that have bQk = 0
would contribute to the score if they are not skipped, even
if the residuals in this case are originally low. If the intra-
normalization technique is used, for example, these residuals
are scaled to have unit norm and might end up contributing
significantly to the score.

We can improve the QAGS scoring scheme by using the
database-side weight derived in Subsec. III-B2:

(
K

∑
k=1

bDk ∥vDk ∥
2

2
)

0.5−α

×
1

√

∑
K
k=1 b

Q
k ∥vQk ∥

2

2

√

∑
K
k=1 b

Q
k ∥vDk ∥

2

2

K

∑
k=1

bQk (vQk )
T vDk (16)

In this expression, the added weight helps the selection of
relevant database images – as shown in experimental results,
this improves retrieval performance. The QAGS score can be
computed for binarized FVs (FV⋆s) in a similar manner.

4) Database-Based AGS (DAGS): If the asymmetry is
reversed, i.e., when a database image might be contained in
the query image, we adapt the asymmetric score accordingly:

1

(∑
K
k=1 b

D
k ∥vQk ∥

2

2
)
α

(∑
K
k=1 b

D
k ∥vDk ∥

2

2
)
α

K

∑
k=1

bDk (vQk )
T vDk (17)

We refer to this scheme as database-based AGS (DAGS): in this
case, residuals are selected based on the database image. This
means that the comparison between the query and each database
image is performed based on a different projection. The use of
the power normalization α is crucial in this case, as for α < 0.5
database images with more visual information are favored, as
explained in Subsec. III-B2. As shown in experiments, results
are poor if α = 0.5: this corresponds to simply performing
each comparison based on a different projection – in this
case, spurious database images with small amount of visual
information might obtain high score, and the retrieval system
might not work well. For the binarized FV (FV⋆) case, we
propose a similar DAGS score computation.

C. Experimental Evaluation

Datasets. We are interested in evaluating the impact of the
proposed techniques to retrieval problems with varying degrees
of asymmetry. We construct two datasets1, illustrated in Fig. 3:
(a) Asym-QCD, where the query image is contained in a
database image, and (b) Asym-DCQ, where a database image is
contained in the query image. The query images used in Asym-
QCD are clean images of objects, and their corresponding
correct database matches are images where the object is shown
along with clutter. For the Asym-DCQ dataset, these two sets
of images are reversed. Distractor images are added to expand
the database to 10,000 items. We construct several versions of
the two datasets, simulating different amounts of asymmetry
by adding a set of clutter images to query or database items –
we denote the number of clutter images as C. For the Asym-
QCD dataset, C = 0 to C = 40 clutter images are added to
each database item and, for the Asym-DCQ dataset, C = 0 to
C = 40 clutter images are added to each query item. For a set
of images constituting one database item or one query item,
we pool the local descriptors of all images and extract a single
FV for the set. The query and reference images are collected
from the Stanford Mobile Visual Search dataset [35], while
distractor and clutter images are collected at random from the
Holidays [36] and MIRFLICKR-1M dataset [37].

Detector, local and global descriptors. We use the Hessian-
Affine keypoint detector [38], and SIFT local descriptors
[39]. Using PCA, the dimensionality of SIFT descriptors is
reduced to d = 32. For computation of FVs and FV⋆s, we use
K ∈ {512,1024,2048} Gaussians. We do not use the weights
from (12) in the experiments using FV⋆, since their effect is
complementary to the contributions introduced in this section.

Comparison techniques. We evaluate the proposed compar-
ison techniques QAGS and DAGS against existing comparison
techniques: baseline (no Gaussian skipping) and SGS. More
specifically, for FVs, the baseline uses (9), SGS uses (13),
QAGS uses (16) and DAGS uses (17). Similar expressions are
used for FV⋆s.

Performance measure. Results are evaluated using Average
Precision for each query, computed over the ranked list of
the top 100 database items. Mean Average Precision (mAP)
is reported for results over the query set. For each query,
the objective is to retrieve the database item containing the
corresponding reference image in the database.

1These new datasets are available at https://purl.stanford.edu/hg081bj1051.

https://purl.stanford.edu/hg081bj1051
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C 0 1 2 5 10 20 40

FV baseline SSR 83.3 74.7 72.1 56.6 44.6 29.9 17.9
FV⋆ baseline SSR 79.9 73.7 70.5 57.5 45.9 29.5 15.4

FV baseline IN 79.8 75.4 71.1 59.0 50.1 30.8 16.7
FV⋆ baseline IN 79.9 73.7 70.5 57.5 45.9 29.5 15.4

FV QAGS SSR 85.4 78.2 75.9 61.4 47.2 32.9 19.1
FV⋆ QAGS SSR 89.4 83.4 79.6 66.9 54.8 35.0 18.7

FV QAGS IN 89.5 84.4 81.2 70.4 57.6 38.6 21.4
FV⋆ QAGS IN 89.4 83.4 79.6 66.9 54.8 35.0 18.7

FV DAGS IN 85.5 79.6 76.6 62.3 52.4 31.6 17.2
FV⋆ DAGS IN 86.2 79.6 75.7 60.0 49.0 29.9 15.4

FV SGS IN 88.3 81.9 79.4 66.7 54.9 35.2 20.0
FV⋆ SGS IN 87.9 81.2 79.3 64.3 54.0 33.4 18.3

Table I: Retrieval performance (% mAP) on the Asym-QCD dataset, with both
binarized (FV⋆) and non-binarized Fisher vectors (FV), varying the number
of added database clutter images (C), for K = 512. For each configuration,
we report the best performance varying τw and α.

Results: query contained in database. First, we evaluate
the usage of intra-normalization (IN). Tab. I presents results
for FV and FV⋆ using both SSR and IN. Performance using no
Gaussian skipping (baseline) may degrade with IN, compared
to the usage of SSR, since this technique gives too much
importance to Gaussians with low wXk , i.e., Gaussians that are
in practice not visited by local features. On the other hand,
the FV QAGS IN technique improves performance compared
to FV QAGS SSR, for all values of C: since in this scheme
the Gaussians with low wXk are skipped, IN boosts retrieval
performance by equalizing the importance of non-skipped
Gaussians. Note that FV⋆ SSR is exactly the same as FV⋆ IN,
since their difference is only the normalization, which does
not change the binarized descriptor. In the rest of experiments
using Asym-QCD, we make use of IN in all retrieval schemes.

Fig. 4a demonstrates the benefit of Gaussian skipping in the
presence of small asymmetry (C = 0), by presenting QAGS
and SGS results, compared to the non-skipping baseline, with
K = 512. Fig. 4b shows that performance further improves for
QAGS and SGS as α decreases, compared to using α = 0.5.

Fig. 5 presents the best performance for QAGS, SGS and the
baseline scheme for each value of C. Since the x-axis uses a
logarithmic scale, the results are presented as a function of the
variable C + 1, such that the results using C = 0 can be seen
in the graph. The benefit of using QAGS is clear, especially
as K increases. QAGS systematically performs better than
SGS as C increases. Note that the FV⋆ results are very close
to the FV results, which indicate that FV⋆ is an effective
approximation of FV. Overall, QAGS improves mAP by up to
25%, compared to the baseline scheme that does not perform
Gaussian skipping.

Results: database contained in query. Tab. II shows
consistent improvements when using DAGS with IN, compared
to using DAGS with SSR. In the rest of experiments using
Asym-DCQ, we make use of IN in all retrieval schemes.

Fig. 6a presents retrieval performance as a function of τw
with α = 0.5, and Fig. 6b presents retrieval performance as a
function of α, with τw = 10−4, both plots considering C = 0. As
expected, the results using DAGS with α = 0.5 are poor. DAGS
results are much improved as α decreases. These plots show
that retrieval performance can be much improved for C = 0
by using DAGS or SGS, compared to using the baseline FV

C 0 1 2 5 10 20 40

FV baseline SSR 89.1 79.5 76.3 67.1 46.0 30.0 15.0
FV⋆ baseline SSR 86.5 78.3 76.3 61.4 38.7 23.7 9.2

FV baseline IN 88.8 79.4 78.5 63.1 43.3 25.2 10.5
FV⋆ baseline IN 86.5 78.3 76.3 61.4 38.7 23.7 9.2

FV QAGS IN 92.9 84.6 81.1 68.6 50.9 32.5 18.8
FV⋆ QAGS IN 91.8 83.5 79.7 66.0 46.5 30.8 16.9

FV DAGS SSR 90.4 82.2 78.8 71.7 51.7 34.8 21.7
FV⋆ DAGS SSR 93.3 85.6 81.6 70.8 53.8 35.6 19.9

FV DAGS IN 93.5 86.7 82.0 74.2 57.3 36.8 22.4
FV⋆ DAGS IN 93.3 85.6 81.6 70.8 53.8 35.6 19.9

FV SGS IN 94.3 86.0 81.7 72.0 54.8 34.7 21.1
FV⋆ SGS IN 94.2 85.0 80.7 69.0 52.4 33.6 18.1

Table II: Retrieval performance (% mAP) on the Asym-DCQ dataset, with both
binarized (FV⋆) and non-binarized Fisher vectors (FV), varying the number
of added query clutter images (C), for K = 512. For each configuration, we
report the best performance varying τw and α.

scheme. Fig. 7 presents retrieval performance as C increases.
The benefit of using DAGS is clear, especially as K increases.
DAGS systematically performs better than SGS for C > 2.
Overall, DAGS improves mAP by up to 25%, compared to the
baseline scheme that does not perform Gaussian skipping.

IV. TEMPORAL AGGREGATION

In this section, we design descriptors which can be used to
compare video segments directly against query images. Fig. 8
presents the natural structure of video databases, serving to
establish the nomenclature we use for different temporal units
of video. A video segment is defined as a sequence of frames.
Shots and scenes are two types of segments, which are delimited
depending on the audiovisual contents of a video. A shot is a
sequence of consecutive video frames taken without interruption
by a single camera [40], [41]. Video frames within a shot are
usually similar to each other. A scene is defined as a concise
segment of video that contains interrelated shots and represents
a semantic unit for the given type of content [41], [42]. In
contrast to shots, scenes are longer video segments that contain
diverse visual information. For example, in the context of
news videos, scenes correspond to video segments that contain
complete news stories. In this case, the scene often starts with
an anchor shot, then cuts to a shot of a reporter in the field, etc.
In another example, lecture videos, scenes correspond to video
segments which present a single concept, or set of interrelated
concepts. Both for news and lecture videos, scenes are typically
several minutes long.

In this work, we are interested in designing scene-based
descriptors for matching against query images. We introduce
two techniques, in Subsecs. IV-A and IV-B, which lead to
different trade-offs in terms of retrieval accuracy, latency
and memory requirements. Experiments are presented in
Subsec. IV-C. To the best of our knowledge, we are the first
to study descriptors based on such long and diverse video
segments for image-based retrieval. The techniques we develop
can very efficiently scan the video database to find the scenes
most likely to contain the query image. For a discussion on
shot-based descriptors, we refer the reader to our previous
work [7].
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Figure 5: Retrieval results on the Asym-QCD dataset, with both binarized (FV⋆) and non-binarized Fisher vectors (FV), varying the number of added clutter
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Figure 6: Retrieval results on the Asym-DCQ dataset, with both binarized (FV⋆) and non-binarized Fisher vectors (FV), K = 512, C = 0, varying (a) τw (with
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A. Temporal Aggregation Using Fisher Vectors

In this subsection, we consider temporal aggregation of
visual information using the FV framework. Since it is not
obvious how to extend FVs in order to generate scene-based
signatures, we experiment with different approaches, described
in the following.

Scene FV. Keypoints are detected from each frame indepen-
dently, and local descriptors are extracted for each keypoint.
In this technique, a FV is constructed by simply aggregating
all local descriptors from the frames within a scene.

Scene FV with tracked features (Scene FV-TF). Using
keypoints detected independently from each frame, we perform

tracking to cluster similar keypoints from consecutive frames.
The tracking algorithm works by comparing keypoints based
on their locations and descriptors: two keypoints are considered
part of the same track if their spatial and descriptor distances
are small enough. Then, the local descriptors within a track
are averaged within each scene and L2-normalized. Finally,
the averaged track descriptors in a scene are aggregated into
a FV. Note that this mode inserts an early aggregation stage
into the system: averaged descriptors over a track might lose
some discriminative power before being aggregated into FVs.

Averaged shot FV (Avg. Shot FV). First, we extract FV
signatures for each shot within a scene, by using a technique
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Figure 7: Retrieval results on the Asym-DCQ dataset, with both binarized (FV⋆) and non-binarized Fisher vectors (FV), varying the number of added clutter
images (C), for (a) K = 512, (b) K = 1024 and (c) K = 2048. For each configuration, we report the best performance varying τw and α.

similar to Scene FV – except that the aggregation happens
over a shot, instead of over a scene. These FV signatures are
averaged, and the resulting vector is used to describe the scene.

Frame FV. This mode constitutes a simple algorithm which
serves as a reference for the aggregation techniques we develop.
In this case, FVs are constructed independently for each frame
in a scene, and no scene-based aggregation is performed.

Note that the techniques Scene FV, Avg. Shot FV and
Scene FV-TF generate a single FV per scene, while Frame
FV generates multiple FVs per scene. If the same number of
Gaussians is used in both cases, Frame FV requires much more
memory and computation for retrieval, compared to the other
techniques. The Scene FV-TF technique is similar in spirit
to burstiness removal methods for I2I retrieval problems [43],
[30], which showed retrieval accuracy gain. In our case, similar
features from consecutive frames can be seen as temporal bursts
– instead of spatial bursts addressed in [43], [30].

Finally, the Scene FV and Avg. Shot FV techniques discard
information related to the ordering of frames. In other words,
the representation for a given scene would be the same
regardless of the ordering of its constituent frames. This is
akin to the use of BoW or FVs in image retrieval, where the
representation is the same regardless of where local features
appear in an image.

B. Temporal Aggregation Using Bloom Filters

In this subsection, we consider a different approach to
temporal aggregation. To deal with the asymmetry of our
problem, we model scenes as sets and images as items. We
propose a generalization of hashing techniques, based on
Bloom filters, to support efficient item-to-set comparisons. In
the following, we review the concept of Bloom filters, then
introduce techniques to enable efficient large-scale retrieval.

1) Review of Bloom Filters: A Bloom filter (BF) [44] is
a data structure designed for set membership queries, widely
used in distributed databases and networking applications – for
a review, see [45]. For a query item q ∈ U and a set of database
items S ⊂ U , a BF is designed to respond to “is q ∈ S?”. If
q ∈ S, the answer is guaranteed to be correct (i.e., no false
negatives); however, if q ∉ S, there is a small probability that
the answer is incorrect (a false positive). This probabilistic
response typically yields significant savings in memory – the

Frames 
1 fps 

Shots 
Contain similar frames 
Length of seconds 

Scenes 
Contain diverse shots 
Length of minutes 

Figure 8: Temporal structure of videos. In this work, frames are extracted
at 1 frame per second (fps). Shots are sequences of frames taken without
interruption by a single camera, and in the databases we consider their length
is on the order of seconds. Scenes are longer video segments that contain
interrelated shots and represent a semantic unit for the given type of content
(for example, for news content, a scene would correspond to a news story). In
the databases we consider, their length is on the order of minutes.

total size of a BF can be much smaller than the combined
size of all items it encodes. We consider two variants of BFs,
described in the following.

Non-partitioned BF. In this case, the BF representation of
S is a bit vector b ∈ {0,1}Lnp , initialized to b = (0,0, ...,0).
The number of bits that are used is Bnp = Lnp. Hash functions
h1, h2, ..., hM , with hm ∶ U → {1,2, ..., Lnp}∀m, map an item
to a single bit of b. To insert a database item x ∈ S into the
BF, we hash it M times and the bits b[h1(x)], b[h2(x)],
..., b[hM(x)] are set to 1. This repeats for each database
item, so more and more bits are set. Insertion of additional
items is simple, but deletion is not possible. At query time,
the BF responds that q ∈ S if b[h1(q)] = b[h2(q)] = ...
= b[hM(q)] = 1, and q ∉ S otherwise.

Partitioned BF. In this variant, the bit vector b is partitioned
into M equal parts bm, each of length Lp. Each hash function
hm only produces bits in its respective partition bm. The total
number of bits is Bp = Lp ×M . If Lp =

Lnp

M
(which leads to

Bp = Bnp), the false positive rate is asymptotically the same
for partitioned and non-partitioned BFs.

Distance-sensitive BF. The BF introduced by [44] is de-
signed to decide for the presence of an exact match in a database
set. In general retrieval problems, the notion of approximate
set membership queries might be more useful. Such queries
are concerned with the question “is q near an item of S?”.
For example, if we model a scene as a set and a frame as its
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Figure 9: Illustration of a Bloom filter encoding set S = {x1, x2, x3} in 2D.
Two hash functions are shown (M = 2), in red and in blue, with bin numbers
marked near the corresponding regions. Partitioned (left) and non-partitioned
(right) BFs are presented. Examples of queries are shown in green. Consider
that the BF should indicate q ∈ S if the query is close to a database item.
Both partitioned and non-partitioned BFs indicate q1 ∈ S (True Positive) and
q2 ∈ S (False Positive). For q3, the non-partitioned BF indicates q3 ∈ S (False
Positive), and the partitioned BF indicates q3 ∉ S (True Negative).

item, a query image will unlikely be exactly the same as a
frame, and a match may never occur. We want to find scenes
that contain frames which are similar to the query image. Our
application is thus more suitable to distance-sensitive Bloom
filters (DSBF) [46], which address this problem, illustrated
in Fig. 9. DSBFs are similar to standard BFs, but they are
coupled to locality-sensitive hashes (LSH) – since in this case
the hashes must map similar items to the same hash bucket
with high probability.

2) BF-GD: Using Global Descriptors: First, we apply the
BF framework to our problem in a straightforward way: query
images are directly modeled as items, and database scenes as
sets of video frames. For each scene, the constituent frames
are hashed into a BF. A query image can then be matched
against the BF of each scene. To represent query images and
video frames, we use FV global descriptors – this method is
denoted BF-GD.

3) BF-PI: Using Point-Indexed Descriptors: We also con-
sider a different configuration of the BF framework. The
motivation arises from noticing the two levels of aggregation at
play when using BF-GD: local descriptors are first aggregated
into FVs per frame, then FVs are aggregated per scene. It is not
clear the impact of these two stages to the discriminativeness
of the final scene descriptor – this leads us to remove the first
aggregation step, by hashing embedded local descriptors into
BFs directly. We make use of point-indexed representations,
which were introduced by Tao et al. [47]. In [47], the
authors show how a FV can be decomposed into the Fisher
embedding of each local descriptor, leading to a point-indexed
representation: instead of storing a FV, the database stores
an embedded version of each local descriptor. Our proposed
technique is called BF-PI. Consider a local feature x and a
FV with parameters {wk, µk, σk, k = 1 . . .K}, as before. As in
[47], we employ the point-indexed representation of x using
only the Gaussian from the FV which obtains the strongest
soft-assignment probability. The point-indexed representation
for x is a triplet:

{r;
γx(r)
√
wr

;dx = σ
−1
r (x − µr)} (18)

where r is the index of the Gaussian with strongest soft-
assignment probability for x, γx(r) is the value of that soft-
assignment probability, and dx is the scaled residual vector
between x and the r-th Gaussian. With x represented in this
manner, the bucket hr(dx) in the BF is set to 1.

4) Hash Functions & Scoring:
LSH families. We consider three LSH families. The metric
for comparing FVs is cosine similarity, so a natural choice
for this problem is the family for cosine distance [48], which
uses random hyperplanes – referred to as LSH-C. A second
family of functions, denoted LSH-S, is a special case of LSH-C,
where the components of random hyperplanes are either +1 or
−1, picked at random. It has been widely used in information
retrieval [49], [50]. We also consider the family for Hamming
distance, denoted LSH-B. This function samples a bit from
a binarized signature, and can be generalized to real-valued
vectors by using random axis-aligned hyperplanes. In practice,
we want to map each item to L buckets. To accomplish that,
each of the M hash functions is composed of n hyperplanes,
thus mapping each item to one out of 2n = L buckets.

Domain of hash functions. The natural choice for the
domain of hash functions is the original space where items lie.
We denote hash functions of this type as vector-based hashes
(VBH). For a FV with K Gaussians, and local descriptors
having d dimensions, FVs lie in RK×d. Thus, in the BF-GD
case, hV BH ∶ RK×d → 2n. Another possibility is to divide
FVs into chunks corresponding to their Gaussians, and hash
each chunk separately. We denote hash functions of this type
as Gaussian-based hashes (GBH), hGBH ∶Rd → 2n. For BF-
PI, we hash d-dimensional point-indexed descriptors into 2n

buckets. Thus, GBH is also applicable to this version.
Quantizer-based hashing. Recent work shows that quan-

tization outperforms random hashes for approximate nearest
neighbor tasks [51]. We employ K-means to construct a vector
quantizer (VQ), and use it as a hash function: an item is inserted
into the bucket corresponding to the centroid it is closest to.

Scoring. At query time, the query image is processed in
the same way video frames are processed at indexing time.
To score scenes, we explore two techniques. We restrict the
presentation to the case of BF-GD, using a non-partitioned BF
(scoring for other configurations is similar). First, we consider
scoring based on the number of hash matches (S#). Given
the query image descriptor q and the m-th hash function, the
score S#

v of database scene v is updated as:

S#
v ∶= S#

v + bv[hm(q)] (19)

In other words, the score of scene v is incremented if its
hm(q)-th bucket is set. Another option is to use TF-IDF, as is
common in information retrieval: for the same case as above,
the score STv of scene v can be computed as:

STv ∶= STv + bv[hm(q)] ⋅
i2hm(q)

(∑l bv[l]i
2
l )
η

(20)

where il corresponds to the IDF weight of bucket l and
(∑l bv[l]i

2
l )
η denotes a normalization factor, where η is

empirically chosen (η = 0.5 corresponds to L2 normalization).
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Figure 10: Retrieval results on the ClassX-600k dataset, using scene descriptors based on binarized Fisher vectors (FV⋆). (a) Comparison of different scene
aggregation schemes, using QAGS with Ksc = 512 and αsc = 0.5. We report the best performance varying τscw . (b) Retrieval performance of the Scene FV⋆

scheme for different asymmetric scoring schemes, as a function of Ksc. For each data point, we report the best performance varying τscw and αsc.
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Figure 11: Retrieval results comparing Scene FV⋆ descriptors against Frame FV⋆ descriptors, using asymmetric comparisons. The plots present mAP as a
function of the index size, for three datasets: (a) SI2V-600k, (b) VB-600k and (c) ClassX-600k. Each curve is drawn by varying the number of Gaussians in
the FV construction. For each data point, we report the best performance varying τscw and αsc.

C. Experimental Evaluation

Datasets. We consider 3 datasets. The Stanford I2V (SI2V)
dataset is currently the largest dataset for this research problem
[23]. It contains news videos, and query images are collected
from the web. The Video Bookmarking (VB) dataset [8] uses
the same videos as SI2V, but the queries contain displays with
a frame of a video being played. This models the case where
a user wants to retrieve the video being played, e.g., to resume
playback in a different device. The third dataset, named ClassX,
contains lecture videos [8], with queries being clean images
of slides. In all cases, we extract 1 frame per second. In this
section, we use the dataset versions SI2V-600k, VB-600k and
ClassX-600k (each containing 600k frames and 160 hours of
video). More than 200 queries are used per dataset. To train
auxiliary structures (e.g., GMM, PCA), we use independent
datasets [8].

Performance measure. We follow the evaluation procedure
from previous work [7], [23], to obtain comparable figures:
results are evaluated using mAP.

Detector and local descriptors. As in the previous section,
we use the Hessian-affine detector [38], and describe keypoints
using SIFT [39]. Using PCA, the dimensionality of SIFT
descriptors is reduced to d = 32.

FV parameters. The scene descriptors introduced in Sub-
sec. IV-A are evaluated in binarized format (FV⋆): the binariza-
tion is applied as the final step in scene signature construction,

based on the sign of each component. To denote that we
use the binarized version of these techniques, we simply
substitute the term FV by FV⋆ – for example, the binarized
version of Scene FV-TF is Scene FV⋆-TF. For computation
of these signatures, we vary the number of Gaussians Ksc

within {512,1024,2048}. The frame-based signatures are
constructed using Kfr ∈ {128,256,512} Gaussians. The
variables τscw and αsc correspond to the parameters used
for asymmetric comparison computation when using these
descriptors, following similar notation to Sec. III.

BF parameters. We set the number of Gaussians KBF to
512 in all experiments using the BF framework. The number
of hash functions M is chosen equal to KBF , which is
experimentally shown to achieve high performance. We vary n,
the number of bits obtained per hash function. For a given n,
an item can be mapped into 2n buckets in the BF. For TF-IDF
scoring, we experiment with η ∈ {0,0.25,0.5,0.75,1}.

Results: FV-based temporal aggregation. Fig. 10 presents
retrieval results on the ClassX-600k dataset. We do not make
use of the weights from (12) in the experiments discussed in
this paragraph – their effect is complementary to the techniques
evaluated here. Fig. 10a compares the different scene-based FV
aggregation methods – showing that Avg. Shot FV⋆ performs
much worse than other methods, while Scene FV⋆ and Scene
FV⋆-TF perform similarly. In the rest of the experiments
using scene-based FVs, we make use of Scene FV⋆, due to
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Figure 12: BF-GD retrieval results using the SI2V-600k dataset: mAP as a
function of n. All curves use scoring based on the number of hash matches.
Comparison of partitioned (P) versus non-partitioned (NP) BFs; GBH versus
VBH hashes; LSH-B versus LSH-C and LSH-S.

SI2V-600k VB-600k ClassX-600k

Frame-based techniques
AlexNet FC6 48.43 18.18 3.70
AlexNet FC7 36.34 15.65 1.14
VGG16 FC6 34.41 6.99 1.53
VGG16 FC7 31.57 4.84 1.18
Frame FV 71.51 70.40 55.02

Scene-based techniques
AlexNet FC6 7.09 10.38 1.20
AlexNet FC7 6.48 8.16 1.31
VGG16 FC6 6.71 3.75 1.29
VGG16 FC7 6.92 2.75 1.10
Scene FV 13.04 34.00 30.60

Table III: Retrieval results (mAP in %) on the 600k datasets, comparing
the proposed FV-based methods (using asymmetric comparisons) against pre-
trained CNN descriptors. All techniques generate descriptors with the same
dimensionality (4k).

its simplicity and high performance. Fig. 10b evaluates the
different FV comparison techniques (introduced in Sec. III)
when using Scene FV⋆ descriptors: baseline (no Gaussian
skipping), QAGS, DAGS and SGS. The results show that the
use of asymmetric comparisons (QAGS) is very important
in this case. Fig. 11 presents retrieval results on the three
datasets: mAP as a function of the index size. In these plots,
we compare scene-based against frame-based descriptors. Scene
FV⋆ achieves excellent performance for the ClassX-600k
dataset – it reduces the index size by approximately two orders
of magnitude with no performance drop. For the SI2V-600k and
VB-600k datasets, scene-based signatures achieve substantial
memory savings (43×), but with a significant performance drop
(more than 25% mAP in both cases).

Results: Comparison against pre-trained CNN features.
Recently, it has been shown that features extracted using
convolutional neural networks (CNN) achieve remarkable
performance in image retrieval problems, even if the models
are trained for a classification task [52], [53]. Tab. III presents
a comparison of such pre-trained CNN features against the FV-
based technique. We employ two widely-used models: AlexNet
[54] and VGG16 [55]. Input frames are resized to 224 × 224
resolution, and features are extracted from the FC6 and FC7
layers (before ReLU) – as in previous work [52], [53]. For
frame-based experiments, features are extracted for each frame
and L2-normalized. For scene-based experiments, features are
extracted for each frame and sum-pooled within each scene
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Figure 13: BF-PI retrieval results using the SI2V-600k dataset: mAP as a
function of n. All curves use partitioned BFs and GBH. Comparison of VQ
versus LSH hashes, and different scoring techniques.

(as in [56]), followed by L2 normalization. In both cases, the
CNN descriptor contains 4k floating-point dimensions. For a
fair comparison, Tab. III presents FV-based results which use
128 Gaussians and no binarization, leading to exactly the same
dimensionality. FV-based techniques outperform CNN-based
techniques substantially, for both frame-based and scene-based
experiments, in all datasets. Pre-trained CNN features optimized
for an image classification task do not provide satisfactory
performance for the image-to-video instance retrieval problems
studied in this paper.

Results: BF-GD. Fig. 12 presents BF-GD results in the
SI2V-600k dataset. First, note that GBH outperforms VBH
significantly: this can be understood since FVs aggregate
different types of visual information per Gaussian, and the
correlation between different Gaussians might be weak. Fig. 12
also compares partitioned (P) and non-partitioned (NP) BFs.
For a fair comparison, we should have Bp = Bnp: P-BF using
M = 512 = 29 bit vectors of length 2n should be compared
to NP-BF using a bit vector of length 2n+9. In this case,
P-BF outperforms NP-BF. Finally, Fig. 12 shows that LSH-
B outperforms LSH-C and LSH-S. Overall, BF-GD obtains
limited mAP, showing that a straightforward BF aggregation
method may not be the best choice for this problem.

Results: BF-PI. Fig. 13 compares the different hashing
and scoring techniques, when using BF-PI. BF-PI provides
a substantial improvement in mAP, compared to BF-GD:
more than 30%. This demonstrates the benefit of removing
the aggregation per frame before hashing. Fig. 13 further
introduces results using the TF-IDF scoring method and VQ
hashes. In this case, we use n ≤ 16 to limit memory and
computational complexity. BF-PI using n = 16, coupled with
VQ-based hashing and TF-IDF scoring, outperforms all other
BF configurations we experimented with.

Comparison of temporal aggregation approaches. Tab. IV
presents summarized results for experiments on the 600k
datasets, using scene-based descriptors with the best config-
urations experimented here. For a fair comparison against
Scene FV⋆, we add scoring weights (presented in (12)), which
improve slightly the previously presented results. We also
present Scene FV⋆ results from previous work [7], where
difference-of-Gaussian keypoints were used for retrieval on
the SI2V dataset. We can see that the use of Hessian-affine
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SI2V-600k VB-600k ClassX-600k

Scene FV⋆ (DoG) [7] 47.33 - -
Scene FV⋆ 50.01 62.17 66.71
BF-GD LSH-B 35.73 38.53 36.02
BF-PI LSH-B 70.46 65.76 45.05
BF-PI VQ 73.75 67.67 63.66

Table IV: Summary of retrieval results (mAP in %) for the 600k datasets. All
techniques use Hessian-affine keypoints, except for [7], which uses difference-
of-Gaussian (DoG) keypoints. The BF techniques presented here use GBH
hashes, partitioned BFs and TF-IDF.

keypoints boosts performance of Scene FV⋆. The BF-PI scheme,
coupled with VQ hashing, outperforms other approaches
significantly for SI2V-600k, by 23.74% mAP compared to
Scene FV⋆. In the VB-600k dataset, it also outperforms other
approaches, but with a smaller margin: 5.50% better than Scene
FV⋆. In the ClassX-600k dataset, BF-PI VQ is slightly worse
than Scene FV⋆, by 3.05%. In the next section, we provide a
thorough large-scale comparison of these different techniques.

V. LARGE-SCALE EXPERIMENTS

In this section, we present large-scale experiments. We first
evaluate the top-performing scene-based descriptors introduced
in Sec. IV. Then, we implement a practical query-by-image
video retrieval system, suitable to large databases, using
inverted index retrieval structures – performance is compared
against a frame-based technique.

A. Comparison of Scene Descriptors

In this subsection, we present a comparison of the top-
performing scene-based descriptors introduced in Sec. IV:
Scene FV⋆ and BF-PI. The parameters for these two techniques
were selected as those which provided the best performance
on the experiments from Sec. IV.

Datasets. We use large-scale versions of the datasets from
Sec. IV, containing many more database video clips: SI2V-
14M, VB-14M (14M frames and 3,801 hours of video) and
ClassX-1.5M (1.5M frames and 408 hours of video).

Performance measure. As before, we use mAP to assess the
quality of retrieval techniques, computed over the top-ranked
100 scenes. In this section, we are also interested in re-ranking
the original list of scenes to generate a more accurate final
list of results. For this use case, it is important to assess the
proportion of relevant database scenes which are ranked among
the top results in the initial list – regardless of their ordering,
since the results will be re-ranked in a subsequent stage. To
measure this type of result, we use Recall@100 (R@100).
The drawback of mAP in this case is that it gives a much
higher weight to top-ranked results. When using R@100, the
scenes positioned at any rank in the results list receive the
same weight. We use mean Recall@100 (mR@100) to evaluate
retrieval results over the entire query set.

Results. Fig. 14 presents results on the three datasets, as the
database size varies, measured using both mAP and mR@100.
For the SI2V dataset, BF-PI performs much better than Scene
FV⋆ as the database size increases, in terms of both measures.
In the VB dataset, the gap in retrieval quality between the
two techniques is not very large. BF-PI outperforms Scene
FV⋆ in terms of mR@100 as the database grows; in terms of
mAP, Scene FV⋆ outperforms BF-PI at large scale. Results
for the ClassX dataset show similar findings: in large-scale,

BF-PI outperforms Scene FV⋆ in terms of mR@100, while
the opposite happens when considering mAP. Note that, in
this dataset, the mR@100 performance is very high for all
techniques.

B. Experiments with Scene Re-ranking

In this section, we present a practical query-by-image video
retrieval system, which performs re-ranking to narrow down
results to the shot level. For large databases, it is infeasible
to use linear search. A scalable solution involves the use
of inverted index structures, such that only a fraction of
database items are considered during query time. For BF-
PI, we can represent it in an inverted index format, which is
straightforward. For Scene FV⋆ and Frame FV⋆, we use the
Multi-Block Indexing Table (MBIT) [57] method, which is a
state-of-the-art inverted index technique suitable to binarized
global descriptors. The choice of MBIT is due to its recent
standardization by MPEG, as part of the Compact Descriptors
for Visual Search (CDVS) effort [57].

Datasets. In these experiments, we are interested in compar-
ing the proposed retrieval techniques against a baseline system
which indexes each frame in the database. For this reason,
we make use of the large-scale SI2V-4M and VB-4M dataset
versions (4M frames and 1,079 hours of video), such that
the frame-based system fits in memory and can be properly
compared. For the ClassX dataset, we make use of the same
version as before: ClassX-1.5M.

Experimental setup. In this subsection, retrieval quality
is assessed in terms of mAP. For the baseline Frame FV⋆

technique, we selected parameters which provide the best
performance on the 600k dataset versions. For BF-PI and
Scene FV⋆, we re-rank the top scene results using shot-based
FV⋆s, as in [7]. For the three compared techniques, we selected
operating points which achieve similar mAP – all techniques
are compared based on a similar level of retrieval quality.

Results are presented in Tab. V, including latency and
memory figures. The proposed techniques enable high quality
retrieval with much reduced resources, compared to the baseline
Frame FV⋆ technique. For the operating points considered in
Tab. V, the method based on BF-PI achieves slightly improved
mAP compared to the frame-based technique in all datasets,
while at the same time obtaining a speedup of 9.6×, 4× and
5.6×, for the SI2V-4M, VB-4M and ClassX-1.5M datasets,
respectively. The retrieval technique which makes use of Scene
FV⋆ enables large-scale retrieval with very compact databases –
it achieves the smallest index size in all cases. The effectiveness
of this technique depends on the dataset. In the ClassX-1.5M
dataset, it obtains slightly improved mAP compared to the
baseline, while being 5.4× faster and 18× more memory-
efficient. This might seem to contradict the results from Sec. IV,
where the same mAP performance was obtained with roughly
two orders of magnitude index compression. The improvement
in terms of index size is not as pronounced here because the
size of the shot-based FV⋆ index (used for re-ranking) is also
taken into account in Tab. V.

VI. CONCLUSION

This work addresses the problem of querying large video
databases by image. First, we introduced a new comparison
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Figure 14: Retrieval performance as a function of the database size, measured in terms of mAP (left y axis, solid lines) and mR@100 (right y axis, dashed
lines). The top-performing BF-PI and Scene FV⋆ schemes are compared on the (a) SI2V-14M, (b) VB-14M, and (c) ClassX-1.5M datasets.

mAP (%) Latency (secs) Memory (GB)

SI2V-4M dataset
Frame FV⋆ (baseline) 72.44 0.4118 20.59
Scene FV⋆ (ours) 49.71 0.1643 3.01
BF-PI VQ (ours) 74.08 0.0431 10.76

VB-4M dataset
Frame FV⋆ (baseline) 75.97 0.4423 20.59
Scene FV⋆ (ours) 67.37 0.2106 3.01
BF-PI VQ (ours) 76.25 0.1101 10.76

ClassX-1.5M dataset
Frame FV⋆ (baseline) 64.21 0.1984 7.67
Scene FV⋆ (ours) 64.47 0.0365 0.42
BF-PI VQ (ours) 67.60 0.0357 1.20

Table V: Summarized results for large-scale experiments, comparing the
proposed techniques against the frame-based baseline. All methods use inverted
index structures and Hessian-affine keypoints. Retrieval latency results are per
query, using one core on an Intel Xeon 2.4GHz.

technique for Fisher vectors, which handles asymmetry of
visual information. The basic idea is to carefully select the types
of visual information to use in such comparisons, efficiently
ignoring clutter that is typical in this case. Experimental results
demonstrate up to 25% mAP improvement for two types of
asymmetry.

Next, we introduced two different video descriptors that
can be directly compared against image descriptors. These
techniques can be seen as high-dimensional embeddings
where images and videos are compared. To be useful, these
embeddings are of much higher dimensionality than those that
are commonly used when querying a database of images using
images. We show that different embeddings (e.g., Scene FV
or BF-PI) have different associated costs, in terms of retrieval
latency and index size.

To construct Scene FVs, we perform a thorough evaluation of
FV-based aggregation techniques. Scene FVs achieve excellent
performance in the ClassX dataset, where high mAP can
be obtained with a very memory-efficient index. The second
video descriptor we introduced is constructed using BFs. We
developed an aggregation technique where frame-based local
descriptors are hashed into BFs – called BF-PI. The proposed
techniques were evaluated at large scale, compared against a
baseline frame-based method. Scene FVs enable very compact
index sizes in all datasets, although with low mAP for some
datasets. BF-PI achieves similar retrieval quality as the baseline
in all datasets, while using a much smaller index (up to 6×)
and reducing query time by up to 9.6×. We also presented
a comparison of the proposed descriptors against recent pre-

trained CNN features: our technique outperforms such CNN
features substantially and consistently, on the three datasets
considered in this work.

While the techniques presented here introduce specific meth-
ods to embed images and videos in a joint high-dimensional
space, future work may focus on learning such embeddings
directly from data. With the rise of deep learning techniques
and large video datasets, we believe that this is a promising
research direction.
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