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ABSTRACT

This paper presents a mathematical analysis of the impact of key-
point detection errors on the similarity of local image descriptors that
are based on histogram of gradients. First, we derive a closed-form
expression for the L

p

distance between two descriptors, for general
translation, scale and orientation detection errors. Second, we intro-
duce a detailed analysis for the special case where translation errors
dominate, using the L2 distance. We show that the individual compo-
nents which form the squared L2 distance can be approximated using
Gamma distributions whose parameters are computed in closed-form
by our model. We obtain approximate closed-form expressions for
the expected squared L2 distances when translation errors are fixed
or uniformly distributed. Finally, these models are validated using
image patches extracted from two standard image retrieval datasets,
by comparing the predicted distributions to the ground-truth.

Index Terms— local descriptors, keypoint detection, histogram
of gradients

1. INTRODUCTION AND RELATED WORK

Gradient-based features have found broad applications in image pro-
cessing and computer vision, such as motion tracking [1–3], image-
based retrieval [4–7], action recognition [8], video copy detection [9],
object detection [10, 11], image classification [12–14], among oth-
ers. The most widely used algorithm is the Scale-Invariant Feature
Transform (SIFT) [15]. With SIFT and its many proposed variations
(e.g. [16–20]), keypoints are first detected in the image. Then, a
descriptor is computed to encode information around the keypoint.
Since each keypoint is associated with a predominant local scale and
orientation, the descriptor can be computed in a canonical coordinate
system to achieve invariance against scale changes and rotation. The
descriptor is calculated by measuring gradient orientation histograms
in different spatial bins, which are placed around the keypoint loca-
tion.

The keypoint detection stage is often sensitive to imaging pa-
rameters such as changes in viewpoint or illumination. Studies on
the impact of keypoints errors on descriptor similarity have been
mainly empirical [19, 21]. In a comparison of several local descrip-
tors, Mikolajczyk and Schmid [19] reported that SIFT and its variants
are the top-performers when the overlap region between correspond-
ing keypoints is small. In this work, we are interested in analytically
modeling how a local image descriptor based on histogram of gra-
dients is affected due to keypoint detection uncertainty. We believe
that such models can find many applications within image processing
and computer vision. For example, in image-based retrieval, they
might be used to evaluate the robustness to keypoint detection errors
of a particular descriptor design. For motion tracking, they could
be used to understand how accurately a tracker needs to be for cor-
responding regions in consecutive frames to be similar enough in
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Fig. 1: Example of keypoint detection with errors. The detected keypoint
depicts errors in location (�x, �y), scale (�s) and orientation (�✓). The
ground-truth patch A and the detected patch B are depicted using 4×4 spatial
bins, as in SIFT [15]. In this paper, we are interested in modeling how the
descriptor extracted from B differs from that of A, as a consequence of the
imprecise keypoint detection.

descriptor space. For image classification applications, where lo-
cal descriptors are usually extracted over a dense grid, our models
could help find the optimal grid spacing. While in this work we
model descriptor distances due to keypoint uncertainty, recent works
have focused on modeling image-level matching performance [22] or
retrieval performance of global image descriptors [23].

Contributions. To the best of our knowledge, this is the first
work that models how local descriptor similarity is affected by key-
point detection uncertainty. Our main results are the following: (1) a
closed-form expression that describes the L

p

descriptor distance for
general errors in translation, scaling and orientation; (2) in the case
where only translation errors are significant, we show that the individ-
ual components of the squared L2 distance can be modeled using a
Gamma distribution whose parameters are computed in closed-form
by our model; (3) again in the case where only translation errors are
significant, we obtain approximate closed-form expressions for the
expected value of the squared L2 distance. We validate the accuracy
of our models using experimental data.

2. PROBLEM FORMULATION

Referring to Fig. 1, consider a ground truth patch A and define A
n

as
its n-th spatial bin. Consider a local image descriptor with N spatial
bins and D gradient orientation bins. For example, for SIFT [15],
N = 16 and D = 8. Denote the normalized histogram of gradient
orientations of A

n

as a
n

, such that a
n

= [a
n

[1], a
n

[2],�, a
n

[D]],
and a

n

[d] is the proportion of area in A
n

where gradient orientations



are quantized to orientation d:

a
n

[d] = �Ad

n

��A
n

� (1)

where �A
n

� denotes the area of A
n

, and Ad

n

is the region within A
n

where gradient orientations fall into bin d (�Ad

n

� ≤ �A
n

�).
Define f

A

as the local feature descriptor for A, generated
by concatenating the histograms for each spatial bin, i.e., f

A

=[a1;a2;�;aN

]. Similar notation is used for patch B, which is
extracted around a keypoint detected with errors. Errors in location
(�x and �y), orientation (�✓) and scale (�s) are defined as:

�x = x
B

− x
A

(2a)
�y = y

B

− y
A

(2b)
�✓ = ✓

B

− ✓
A

(2c)

�s = s
B

s
A

− 1 (2d)

where x
A

, y
A

, ✓
A

, s
A

correspond to the 2D locations, orientation and
scale for patch A, and similarly x

B

, y
B

, ✓
B

, s
B

for patch B.
Consider the problem of comparing the descriptors f

A

and f
B

.
We use a distortion measure based on a L

p

-norm, such as �f
A

−
f
B

�p
p

= ∑N

n=1∑D

d=1 �an

[d]−b
n

[d]�p. Our objective is to characterize
how the errors �x, �y, �✓, and �s give rise to a distortion �f

A

−
f
B

�p
p

. Our goal is to capture the most important effects for descriptors
that are based on histogram of gradients – so we do not take into
account some optimizations that are used in practice, such as Gaussian
weighting, gradient magnitude weighting, L2 normalization, etc.

3. MODELING DESCRIPTOR DISTANCE

Let us denote the overlap region of the spatial bins A
n

and B
n

as O
n

,
and the non-overlap regions as A′

n

and B′
n

. A normalized histogram
a

n

can be decomposed into a contribution from O
n

and a contribution
from A′

n

, denoted as o
n

and a

′
n

, respectively. For each component
of a

n

and b

n

:

a
n

[d] = ↵
n

oA
n

[d] + (1 − ↵
n

)a′
n

[d] (3a)

b
n

[d] = �
n

oB
n

[d] + (1 − �
n

)b′
n

[d] (3b)

where o

A

n

and o

B

n

are histograms calculated from O
n

with respect to
the orientations from patches A and B, respectively, and ↵

n

and �
n

are the proportions of overlap areas for A
n

and B
n

:

↵
n

= �On

��A
n

� = �O
n

��O
n

� + �A′
n

� (4a)

�
n

= �On

��B
n

� = �O
n

��O
n

� + �B′
n

� (4b)

As in Fig. 1, �A
n

� = wh, and �B
n

� = wh(1 + �s)2. Therefore,
↵
n

= (1 +�s)2�
n

.
We would like to model the component-wise difference (a

n

[d]−
b
n

[d]) in terms of the detection errors. Hence, we compute the
difference of (3a) and (3b) and substitute ↵

n

in terms of �
n

to obtain:

a
n

[d] − b
n

[d] = ↵
n

oA
n

[d] − �
n

oB
n

[d]
+ (1 − ↵

n

)a′
n

[d] − (1 − �
n

)b′
n

[d] (5a)

= (1 − �
n

)(a′
n

[d] − b′
n

[d])
+ �

n

(oA
n

[d] − oB
n

[d])
+ �

n

(2�s +�s2)(oA
n

[d] − a′
n

[d]) (5b)

With this expression, we obtain:

�f
A

− f
B

�p
p

= N�
n=1

D�
d=1
�(1 − �

n

)(a′
n

[d] − b′
n

[d])
+ �

n

(oA
n

[d] − oB
n

[d])
+ �

n

(2�s +�s2)(oA
n

[d] − a′
n

[d])�p (6)

Thus, the L
p

distance of descriptors f
A

and f
B

can be expressed as a
function of three terms: (a) Difference of histograms of non-overlap
regions (a′

n

[d]− b′
n

[d]), magnified by the proportion of non-overlap
area (1− �

n

), (b) Difference of histograms in O
n

, (oA
n

[d]− oB
n

[d]),
magnified by the proportion of overlap area �

n

, and (c) Difference of
histograms within A

n

, (oA
n

[d]−a′
n

[d]), magnified by the proportion
of overlap area and the error in scale, �

n

(2�s +�s2).
Translation error only. In the following, we consider in more

detail the case where translation errors dominate. With �s ≈ 0,
↵ ≈ �, �✓ ≈ 0, oA

n

≈ oB
n

, the component-wise difference (5b) can be
simplified as:

z
d,n

= a
n

[d] − b
n

[d] = (1 − �
n

)(a′
n

[d] − b′
n

[d]) (7)

Using this, the descriptor distortion can be expressed as:

�f
A

− f
B

�p
p

= N�
n=1

D�
d=1
�z

d,n

�p = N�
n=1

D�
d=1
�(1 − �

n

)(a′
n

[d] − b′
n

[d])�p
(8)

Thus, in the case of pure translation error, descriptor distances de-
pend mainly on the distance between histograms of non-overlapping
regions. For a translation error �v = (�x,�y), we can write �

n

as:

�
n

= �wh−(��x�h+��y�w−��x���y�)
wh

, for −w ≤�x ≤ w,−h ≤�y ≤ h
0, otherwise

(9)
This can be simplified as �

n

= wh ⋅ Pyr(�v), where the pyramid
function Pyr(.) is defined as:

Pyr(x, y) = � (w−�x�)(h−�y�)w

2
h

2 , for −w ≤ x ≤ w,−h ≤ y ≤ h
0, otherwise

(10)

Thus, the component-wise difference (7) can be expressed as:

z
d,n

= (1 −wh ⋅Pyr(�v))(a′
n

[d] − b′
n

[d]) (11)

In the following, we consider in more detail L2 distances, for two
cases: (i) fixed translation errors, and (ii) uniformly-distributed trans-
lation errors. We start by focusing on z2

d,n

, the component-wise
squared distance, and characterize its distribution. We obtain closed-
form expressions for the expected value of �f

A

− f
B

�22 in both cases.
3.1. Fixed translation error
The expected value of squared component-wise differences for a
given translation error �v can be written as:

E[z2
d,n

��v] = (1 −wh ⋅Pyr(�v))2E[(a′
n

[d] − b′
n

[d])2] (12)

We develop E[(a′
n

[d] − b′
n

[d])2] further:

E[(a′
n

[d]−b′
n

[d])2] = E[a′
n

[d]2]−2E[a′
n

[d]b′
n

[d]]+E[b′
n

[d]2]
(13)

Now, we make two assumptions: (i) a′
n

[d] and b′
n

[d] are identically
distributed, (ii) a′

n

[d] and b′
n

[d] are uncorrelated. This assumption
is reasonable since the non-overlapping regions are separated and lie
on opposite sides of spatial bin n. Thus, (13) can be simplified as:

E[(a′
n

[d] − b′
n

[d])2]
= E[a′

n

[d]2] − 2E[a′
n

[d]]E[a′
n

[d]] +E[a′
n

[d]2]
= 2 ⋅Var[a′

n

[d]]. (14)



To simplify the rest of the analysis, we consider a discretized grid of
pixels within a patch. Similar to (1), we can expand a′

n

[d] as:

a′
n

[d] = �A
′
d

n

��A′
n

� = 1�A′
n

� �
x,y[x,y] ∈A′n

g
d

[x, y] (15)

where A′
n

is the set of pixels in the non-overlapping region of spatial
bin A

n

and �A′
n

� is its cardinality. We introduce the binary mask
g
d

[x, y], which is 1 if the gradient at x, y has orientation that falls
into bin d, and 0 otherwise. We can expand �A′

n

� as:

�A′
n

� = wh(1 − �
n

)
= wh(1 −wh ⋅Pyr(�v)) (16)

Denote Prob(g
d

[x, y] = 1) = p
d

and assume that g
d

[x, y] is station-
ary. In this case, the variance of a′

n

[d] can be computed using (15):

Var[a′
n

[d]] = 1�A′
n

�2 �
x,y[x,y] ∈A′n

Var[g
d

[x, y]]

+ 1�A′
n

�2 �
x,y[x,y] ∈A′n

�
u,v[u,v] ∈A′n[u,v] ≠ [x,y]

Cov[g
d

[x, y], g
d

[u, v]]

= 1�A′
n

�pd(1 − pd)
+ 1�A′

n

�2 �
x,y[x,y] ∈A′n

�
u,v[u,v] ∈A′n[u,v] ≠ [x,y]

Cov[g
d

[x, y], g
d

[u, v]]

= 1�A′
n

�pd(1 − pd) + 1�A′
n

�2 �
i, j[i, j] ≠ 0

N

i,j

(�v)�(d)
i,j

(17)

where �
(d)
i,j

= Cov[g
d

[t1, t2], g
d

[t1 − i, t2 − j]] and N

i,j

(�v) is
the number of pairs of pixels in the non-overlapping region whose
locations are separated by [i, j]. Note that �(d)

i,j

is independent of t1
and t2 since we assume stationarity. With this, the expected value of
the component-wise difference conditioned on the translation error
�v can be computed by combining (16), (17), (14) and (12):

E[z2
d,n

��v] = 2

wh
p
d

(1 − p
d

)(1 −wh ⋅Pyr(�v))
+ 2

w2h2 �
i, j[i, j] ≠ 0

N

i,j

(�v)�(d)
i,j

. (18)

The values of �(d)
i,j

can be estimated from training data. We can use
an approximation for N

i,j

(�v), which is discussed in detail in the
supplemental material1 (Appendix A). From (8), we can derive:

E[�f
A

− f
B

�22��v] = N�
n=1

D�
d=1

E[z2
d,n

��v] (19)

Using (18), we can then substitute for E[z2
d,n

��v] in (19) to obtain a
closed-form expression for the conditional expectation of the squared
L2 distance between local descriptors under a given translation error.

We can further characterize the distribution of z2
d,n

given �v.
Note that a

n

[d] is a normalized sum of many identically distributed
variables, similar to (15). From the Central Limit Theorem for corre-
lated random variables, a

n

[d] tends to a Gaussian distribution. Since
we assume that a

n

[d] and b
n

[d] are identically distributed, z
d,n

is

1Supplemental material is available on the authors’ websites.

approximately zero-mean Gaussian, from (7). From the properties
of Gaussian distributions, if follows that z2

d,n

is approximately dis-
tributed as a Gamma distribution with shape parameter 1

2
and scale

parameter 2 ×E[z2
d,n

��v]. Thus, (18) also enables us to obtain an
approximate distribution for z2

d,n

in closed-form.
3.2. Uniformly-distributed translation error
Given a distribution of translation errors and using (18), we obtain:

E[z2
d,n

] = E�v[E[z2
d,n

��v]]
= 2

wh
p
d

(1 − p
d

)(1 −wh ⋅E�v[Pyr(�v)])
+ 2

w2h2 �
i, j[i, j] ≠ 0

E�v[Ni,j

(�v)]�(d)
i,j

(20)

When �v follows a uniform distribution, the term E�v[Pyr(�v)]
can be computed in closed-form, and the term E�v[Ni,j

(�v)] can
be derived in closed-form using an approximation. These derivations
are presented in detail in the supplemental material (Appendix A),
due to space limitations. Once again, we can derive from (8):

E[�f
A

− f
B

�22] = N�
n=1

D�
d=1

E[z2
d,n

] (21)

Using (20), we can substitute for E[z2
d,n

] in (21) to obtain a closed-
form expression for the expectation of the squared L2 distance be-
tween local descriptors under uniformly-distributed translation errors.

3.3. Model using IID assumption
We refer to the model developed in the previous subsections as M-S,
where “S” refers to the stationarity assumption. We also consider
a simpler model, which makes a stronger assumption, denoted as
M-IID: g

d

[x, y] are assumed to be independent and identically dis-
tributed. M-IID can be seen as a variation of M-S: the expressions for
E[�f

A

−f
B

�22��v] and E[�f
A

−f
B

�22] in this case can be obtained
by setting �

(d)
i,j

to zero in (18) and (20). Our objective is to evaluate
different variations of the model, with different model complexities,
to find which one is most suitable.
3.4. Applicability of the model
The developed models might be applicable to any descriptor which
uses histograms to summarize pixel-level statistics – in other words,
the model is not restricted to histograms based on gradient orienta-
tions. For example, the expressions developed in this section would
be applicable to histograms based on derivatives of any order, if these
derivatives are roughly stationary. In this case, p

d

and �
(d)
i,j

would be
replaced by the equivalent probabilities and covariances, respectively.
Note that some expressions (e.g., (6)) do not assume stationarity and
are even more general.

4. EXPERIMENTS

We conduct experiments to validate the developed models, using
two datasets: (i) Stanford Mobile Visual Search (SMVS) dataset
[24]: 65,593 keypoints are extracted from database images using
a Difference-of-Gaussians detector [15]; (ii) CNN2h dataset [25]:
78,452 keypoints are extracted from database video frames using
a Temporally-Coherent Detector [26]. These datasets present very
different visual contents: the SMVS dataset contains clean images
of objects, while the CNN2h dataset contains video frames extracted
from a CNN newscast. By using these datasets, with two different
keypoint detectors, our goal is to validate our models in different
cases. We divide each dataset randomly into two even splits, and
use one exclusively for learning model parameters, and the other
exclusively for comparing model predictions to data.
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Fig. 2: Estimated and ground-truth distributions for z2
d,n

, using M-S, with translation errors �v2 and �v3. In these plots, d = 5 (orientation bin centered at
180°) and n = 4 (spatial bin on top-right corner). Left: SMVS dataset. Right: CNN2h dataset.

(a) Fixed errors (b) Uniform distribution
�v1 �v2 �v3 U1 U2 U3

SMVS
M-IID 13.85 6.58 3.65 14.85 10.02 5.62
M-S 86.97 75.36 83.76 80.49 79.58 78.45
CNN2h
M-IID 14.21 6.68 3.73 14.48 9.78 5.48
M-S 80.62 68.30 77.33 80.09 78.94 77.59

Table 1: Model accuracy in percent, calculated using (22). The expected
value of the squared L2 descriptor distance E[��f

A

− f

B

��22] is computed
from data and compared to the models. The results are summarized for two
cases: (a) fixed keypoint errors, i.e., the expectation conditioned on �v, and
(b) uniform distributions of keypoint errors. The M-S model provides a much
better approximation of the empirically measured data.

For descriptor extraction and learning of model parameters, we
extract a canonical patch around the detected keypoint, normalized in
terms of scale and orientation, of size 64×64 pixels. We compute the
descriptor using 4 × 4 spatial bins (i.e., w = h = 16) and 8 gradient
orientation bins, as in SIFT. The covariances �

(d)
i,j

are estimated
for 0 ≤ �i�, �j� ≤ 10 (and considered zero otherwise). To evaluate
quantitatively the estimates given by our models, we first compute
the relative error (RE), defined as the ratio of the absolute error to
the true value. The results are then presented as accuracy, i.e.:

Acc(y, ŷ) = 1 −RE(y, ŷ) = 1 − �y − ŷ�
y

(22)

where y denotes the ground-truth value and ŷ the estimate. The range
of Acc(y, ŷ) varies from −∞ (poor estimate) to 1 (perfect estimate).

Models for z2
d,n

given �v. We validate our models for fixed
translation errors using three different error directions and magni-
tudes: �v1 = [1,1], �v2 = [−1,3] and �v3 = [4,−4]. To es-
timate the ground-truth distribution for a given �v, we shift each
patch by the specified �v and compute the distribution of z2

d,n

over
the entire test set. Fig. 2 presents some ground-truth and estimated
distributions of z2

d,n

, with translation errors �v2 and �v3, using
M-S. It can be seen that the Gamma distribution fits the data well
for M-S. Further results for the estimated distributions of z2

d,n

are
provided in supplemental material (Appendix B), due to space lim-
itations. Tab. 1 part (a) summarizes the accuracy of our estimates.
M-S estimates E[�f

A

− f
B

�22��v] with mean accuracy of 78.72%.
M-IID, on the other hand, generates poor estimates.

Models for z2
d,n

with uniform �v. We validate our models for
uniform translation errors, −U

2
≤ �x,�y ≤ U

2
, using three cases:

U1 = 2, U2 = 4, and U3 = 8. To estimate the ground-truth expected
values in this case, we use a Monte Carlo simulation, where each patch
is shifted by a translation vector drawn from the uniform distribution,
and the results are aggregated over the entire test set. Tab. 1 part (b)
shows accuracy results. Again, M-IID estimates are poor, suggesting
that the IID assumption is too severe in this case. M-S estimates
E[�f

A

− f
B

�22] with much higher mean accuracy: 79.19%.
Discussion. While in both cases M-S explains most of the varia-

tion of ground-truth values, the required accuracy level depends on
the application under consideration. In many applications, descrip-
tor matching uses a ratio test, where a putative match is considered
correct if the ratio of distances between the first and second nearest
neighbors in the database is small enough. In this case, this ratio is
more important than the actual distance values. This was exploited
in [15], using approximate nearest neighbor (ANN) methods for sub-
stantial speedup. We perform an experimental evaluation to test if
M-S is useful in such applications: we compute the accuracy (22)
when estimating ratios of expected values of squared L2 distances.
First, for fixed translation errors, we compute the ratio between the es-
timated expected value given �v1 and the estimated expected value
given �v3: compared to the ground-truth ratio of expected values,
the accuracy is 97.24% for the SMVS dataset, and 97.32% for the
CNN2h dataset. Second, for uniform translation errors, we compute
the ratio between the estimated expected value using U1 and the esti-
mated expected value using U3: compared to the ground-truth ratio of
expected values, the accuracy is 98.32% for the SMVS dataset, and
97.96% for the CNN2h dataset. For a comparison, M-IID obtains
negative accuracies for the estimates of these ratios (i.e., the estimates
are poor, leading to large relative errors). We conclude that the M-S
models are useful for such applications, as the ratio of estimated
values is very similar to the ratio of ground-truth values.

5. CONCLUSION
Our mathematical analysis considers local image descriptor similar-
ity as a function of keypoint detection errors. For descriptors that
are based on gradient orientation histograms, we show that the L

p

distance between two descriptors can be expressed in closed-form for
general translation, scale and orientation detection errors. In the case
where translation errors dominate, we show that the expected value
of the squared differences can be estimated in closed-form. Experi-
mental results validate that the derived analytical models approximate
the ground-truth well, for a model that assumes stationarity of the
gradient orientation. On the other hand, with an IID assumption for
the gradient orientation, the model accuracy is not satisfactory.
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ABSTRACT

We provide further derivations and experimental results. First,
we present detailed derivations to obtain approximate closed-form
expressions for the expected squared L2 distance when translation
errors are known, or when they are uniformly distributed. Second, we
provide more experimental results to validate the Gamma distribution
model derived for component-wise squared L2 distances.

Appendix A: Supplemental derivations
In this section, we first present a useful approximation of N

i,j

(�v),
which works well in practice. With this expression, we can write
E[�f

A

− f
B

�22��v] in closed-form. Then, we present the derivation
of the expected values of N

i,j

(�v) and Pyr(�v), using a uniform
distribution of translation errors. This allows us to obtain a closed-
form expression for E[�f

A

− f
B

�22].
Approximation of Ni,j(�v)
N

i,j

(�v) denotes the number of pixel pairs within the non-overlap
region of a given spatial bin which are separated by an [i, j] dis-
placement, when the spatial bin is shifted by �v with respect to the
ground-truth spatial bin. Note that we are not interested in N0,0(�v),
as the summations that use N

i,j

(�v) explicitly discard the [0,0]
displacement. This happens because the [0,0] displacement gives
rise to the variance of the random variable under consideration, which
can be calculated in closed-form in our model.

Fig. 1 gives three examples of pixel grids with some displace-
ments, with w = h = 4. The blue grid corresponds to the grid in the
correct position, while the red one corresponds to the grid with the
incorrect keypoint detection. To give some examples of the values
we want to compute, the case (a) has:

• N1,0([1,−1]) = N−1,0([1,−1]) = 3
• N0,1([1,−1]) = N0,−1([1,−1]) = 3
• N1,1([1,−1]) = N−1,−1([1,−1]) = 1
• N2,2([1,−1]) = N−2,−2([1,−1]) = 1
• N3,3([1,−1]) = N−3,−3([1,−1]) = 1

Clearly, we see that N
i,j

(�v) = N−i,−j(�v), so we only need to
compute N

i,j

(�v) for half of all possible [i, j].
It is difficult to express N

i,j

(�v) exactly as a function of i, j and
�v, so we use an approximation. We divide the non-overlap region
into two regions, as in Fig. 2: (i) a “vertical” region (green), which is

Δx"="1,"Δy"=";1"

y

x

(a)"

Δx"=";1,"Δy"=";2"

(b)"

Δx"="3,"Δy"="3"

(c)"

Fig. 1: Three different examples of pixel grids with w = h = 4. The samples
in blue represent the grid in the correct position, while the red ones represent
the grid used for the incorrect keypoint detection.

y

x

Δx"=";1,"Δy"=";2"
Fig. 2: Example of pixel grids with w = h = 4, showing the two regions into
which the non-overlap area is divided: vertical (green) and horizontal (orange).
The samples in blue represent the grid in the correct position, while the red
ones represent the grid used for the incorrect keypoint detection.

generated by horizontal shifts and (ii) a “horizontal” region (orange),
which is generated by vertical shifts. We calculate N

i,j

(�v) for each
of these regions, and subtract the contribution from their intersection:

N

i,j

(�v) ≈max(0, (h − �j�))max(0, ��x� − �i�)
+max(0, (w − �i�))max(0, ��y� − �j�)
−max(0, ��x� − �i�)max(0, ��y� − �j�) (1)

Considering Fig. 2, we can see that this expression is an approxima-
tion since we are not taking into account the pairs formed by, say, a
pixel on the right of the orange region and a pixel on the bottom of the
green region. More concretely, N−3,3([−1,−2]) = 1, but this approx-
imation gives N−3,3([−1,−2]) = 0. However, this expression works
well because the pixel pairs which are not taken into consideration
are usually the ones which are the most distant, and the covariance
between distant pixels is weaker. In this example, our approximation
gives N0,1([−1,−2]) = 6, N1,1([−1,−2]) = 3, N2,0([−1,−2]) = 4
N2,1([−1,−2]) = 2, which are all correct.

We can then use (1) to compute the final closed-form expression
for E[�f

A

− f
B

�22��v].



Expected value of Ni,j(�v)
We consider a discrete uniform distribution of translation errors. In
this case, the distribution is separable with probability mass function
of 1

U

2 at each point within [−U

2
,

U

2
− 1] × [−U

2
,

U

2
− 1], with U > 0

and multiple of 2.
Using the approximation (1), we obtain:

E�v[Ni,j

(�v)]
≈max(0, (h − �j�))E�x

[max(0, ��x� − �i�)]
+max(0, (w − �i�))E�y

[max(0, ��y� − �j�)]
−E�x

[max(0, ��x� − �i�)]E�y

[max(0, ��y� − �j�)] (2)

The calculation of E�v[Ni,j

(�v)] thus requires the computation
of E�x

[max(0, ��x� − �i�)]. Using the discrete uniform distribution:

E�x

[max(0, ��x� − �i�)] =
= 1

U

U
2 −1�

�x=−U
2

max(0, ��x� − �i�)

= 1

U

������max�0, U
2

− �i�� + 2 ×
U
2 −1�

�x=0
max(0, ��x� − �i�)������ (3)

In the case where �i� ≤ U

2
− 1, we can derive:

U
2 −1�

�x=0
max(0, ��x� − �i�) =

U
2 −1�

�x=�i�
(��x� − �i�)

= �U2 − �i�� �U2 − 1 − �i��
2

(4)

In the case where �i� > U

2
− 1, clearly∑U

2 −1
�x=0max(0, ��x� − �i�) = 0.

Finally, we obtain:

E�x

[max(0, ��x� − �i�)] =
= 1

U

�max�0, U
2

− �i�� + �U
2

− �i��max�0, U
2

− 1 − �i��� (5)

The final expression for E�y

[max(0, ��y� − �j�)] is very similar,
naturally. Thus, we can easily compute E�v[Ni,j

(�v)] by using
(2).

Expected value of Pyr(�v)
Consider the same discrete uniform distribution of translation errors
as before: a separable distribution with probability mass function of
1
U

2 at each point within [−U

2
,

U

2
− 1]× [−U

2
,

U

2
− 1], with U > 0 and

multiple of 2. In this case:

E�v[Pyr(�v)]
= 1

U

2

U
2 −1�

�x=−U
2

U
2 −1�

�y=−U
2

Pyr(�x,�y)

= 1

U

2

U
2 −1�

�x=−U
2

U
2 −1�
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2
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w

2
h

2

= 1
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2
w

2
h

2
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�x=−U
2

(w − ��x�)
U
2 −1�

�y=−U
2

(h − ��y�)

= 1

wh

�1 − U(w + h)
4wh

+ U

2

16wh

� (6)
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Fig. 3: Gradient orientation bin (d) numbering convention used in our work.
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Fig. 4: Spatial bin (n) numbering convention used in our work.

where the last step is obtained by using the fact that∑K

k=0 = K(K+1)
2

,
and standard mathematical derivations. In the case of w = h, we can
further simplify (6) to:

E�v[Pyr(�v)] = 1

w

2
�1 − U

4w

�2 (7)

Together with the expression for E�v[Ni,j

(�v)] derived in the
previous subsection, the expression for E�v[Pyr(�v)] can then be
used to derive the final closed-form expression for E[�f

A

− f
B

�22].
Appendix B: Supplemental experimental results
In this section, we present further experimental results for the dis-
tribution of z2

d,n

given �v. Our objective is to provide further ev-
idence that the Gamma distribution approximation for z2

d,n

, using
M-S, works well. To clarify which spatial and orientation bins are
used, Fig. 3 and Fig. 4 present the conventions we use for numbering
them. Fig. 5 and Fig. 6 present estimated distributions for different
orientation and spatial bins, using both the SMVS and the CNN2h
datasets, plotted against ground-truth distributions measured from
data. These figures show the estimated distributions using M-IID and
M-S, plotted for �v1, �v2 and �v3 (as described in the experi-
mental section of the main part of this paper). We can infer that the
M-IID models (in green) estimate the distributions poorly. The M-S
model (in red) estimates the ground-truth distributions much better,
certainly capturing the main trends.
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Fig. 5: Estimated and ground-truth distributions for z2

d,n

, using M-IID and M-S, with translation errors �v1, �v2 and �v3, using the SMVS dataset. In these
plots, (a) d = 1, (b) d = 2, (c) d = 3, (d) d = 4, (e) d = 5, and (f) d = 6, all with n = 3.
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Fig. 6: Estimated and ground-truth distributions for z2

d,n

, using M-IID and M-S, with translation errors �v1, �v2 and �v3, using the CNN2h dataset. In
these plots, (a) d = 3, (b) d = 4, (c) d = 5, (d) d = 6, (e) d = 7, and (f) d = 8, all with n = 10.


