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ABSTRACT

We provide further derivations and experimental results. First,
we present detailed derivations to obtain approximate closed-form
expressions for the expected squared L2 distance when translation
errors are known, or when they are uniformly distributed. Second, we
provide more experimental results to validate the Gamma distribution
model derived for component-wise squared L2 distances.

Appendix A: Supplemental derivations
In this section, we first present a useful approximation of Ni,j(∆v),
which works well in practice. With this expression, we can write
E[∥fA − fB∥2

2∣∆v] in closed-form. Then, we present the derivation
of the expected values of Ni,j(∆v) and Pyr(∆v), using a uniform
distribution of translation errors. This allows us to obtain a closed-
form expression for E[∥fA − fB∥2

2].

Approximation of Ni,j(∆v)
Ni,j(∆v) denotes the number of pixel pairs within the non-overlap
region of a given spatial bin which are separated by an [i, j] dis-
placement, when the spatial bin is shifted by ∆v with respect to the
ground-truth spatial bin. Note that we are not interested in N0,0(∆v),
as the summations that use Ni,j(∆v) explicitly discard the [0,0]
displacement. This happens because the [0,0] displacement gives
rise to the variance of the random variable under consideration, which
can be calculated in closed-form in our model.

Fig. 1 gives three examples of pixel grids with some displace-
ments, with w = h = 4. The blue grid corresponds to the grid in the
correct position, while the red one corresponds to the grid with the
incorrect keypoint detection. To give some examples of the values
we want to compute, the case (a) has:

• N1,0([1,−1]) = N−1,0([1,−1]) = 3

• N0,1([1,−1]) = N0,−1([1,−1]) = 3

• N1,1([1,−1]) = N−1,−1([1,−1]) = 1

• N2,2([1,−1]) = N−2,−2([1,−1]) = 1

• N3,3([1,−1]) = N−3,−3([1,−1]) = 1

Clearly, we see that Ni,j(∆v) = N−i,−j(∆v), so we only need to
compute Ni,j(∆v) for half of all possible [i, j].

It is difficult to express Ni,j(∆v) exactly as a function of i, j and
∆v, so we use an approximation. We divide the non-overlap region
into two regions, as in Fig. 2: (i) a “vertical” region (green), which is
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Fig. 1: Three different examples of pixel grids with w = h = 4. The samples
in blue represent the grid in the correct position, while the red ones represent
the grid used for the incorrect keypoint detection.

y

x

Δx"=";1,"Δy"=";2"
Fig. 2: Example of pixel grids with w = h = 4, showing the two regions into
which the non-overlap area is divided: vertical (green) and horizontal (orange).
The samples in blue represent the grid in the correct position, while the red
ones represent the grid used for the incorrect keypoint detection.

generated by horizontal shifts and (ii) a “horizontal” region (orange),
which is generated by vertical shifts. We calculate Ni,j(∆v) for each
of these regions, and subtract the contribution from their intersection:

Ni,j(∆v) ≈ max(0, (h − ∣j∣))max(0, ∣∆x∣ − ∣i∣)
+max(0, (w − ∣i∣))max(0, ∣∆y∣ − ∣j∣)
−max(0, ∣∆x∣ − ∣i∣)max(0, ∣∆y∣ − ∣j∣) (1)

Considering Fig. 2, we can see that this expression is an approxima-
tion since we are not taking into account the pairs formed by, say, a
pixel on the right of the orange region and a pixel on the bottom of the
green region. More concretely, N−3,3([−1,−2]) = 1, but this approx-
imation gives N−3,3([−1,−2]) = 0. However, this expression works
well because the pixel pairs which are not taken into consideration
are usually the ones which are the most distant, and the covariance
between distant pixels is weaker. In this example, our approximation
gives N0,1([−1,−2]) = 6, N1,1([−1,−2]) = 3, N2,0([−1,−2]) = 4
N2,1([−1,−2]) = 2, which are all correct.

We can then use (1) to compute the final closed-form expression
for E[∥fA − fB∥2

2∣∆v].



Expected value of Ni,j(∆v)
We consider a discrete uniform distribution of translation errors. In
this case, the distribution is separable with probability mass function
of 1

U2 at each point within [−U
2
, U

2
− 1] × [−U

2
, U

2
− 1], with U > 0

and multiple of 2.
Using the approximation (1), we obtain:

E∆v[Ni,j(∆v)]
≈ max(0, (h − ∣j∣))E∆x[max(0, ∣∆x∣ − ∣i∣)]
+max(0, (w − ∣i∣))E∆y[max(0, ∣∆y∣ − ∣j∣)]
−E∆x[max(0, ∣∆x∣ − ∣i∣)]E∆y[max(0, ∣∆y∣ − ∣j∣)] (2)

The calculation of E∆v[Ni,j(∆v)] thus requires the computation
of E∆x[max(0, ∣∆x∣ − ∣i∣)]. Using the discrete uniform distribution:

E∆x[max(0, ∣∆x∣ − ∣i∣)] =
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In the case where ∣i∣ ≤ U
2
− 1, we can derive:
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In the case where ∣i∣ > U
2
− 1, clearly ∑

U
2
−1

∆x=0 max(0, ∣∆x∣ − ∣i∣) = 0.
Finally, we obtain:
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The final expression for E∆y[max(0, ∣∆y∣ − ∣j∣)] is very similar,
naturally. Thus, we can easily compute E∆v[Ni,j(∆v)] by using
(2).

Expected value of Pyr(∆v)
Consider the same discrete uniform distribution of translation errors
as before: a separable distribution with probability mass function of
1
U2 at each point within [−U

2
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2
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2
− 1], with U > 0 and

multiple of 2. In this case:
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Fig. 3: Gradient orientation bin (d) numbering convention used in our work.
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Fig. 4: Spatial bin (n) numbering convention used in our work.

where the last step is obtained by using the fact that ∑K
k=0 = K(K+1)

2
,

and standard mathematical derivations. In the case of w = h, we can
further simplify (6) to:

E∆v[Pyr(∆v)] = 1

w2
(1 − U

4w
)

2

(7)

Together with the expression for E∆v[Ni,j(∆v)] derived in the
previous subsection, the expression for E∆v[Pyr(∆v)] can then be
used to derive the final closed-form expression for E[∥fA − fB∥2

2].

Appendix B: Supplemental experimental results
In this section, we present further experimental results for the dis-
tribution of z2

d,n given ∆v. Our objective is to provide further ev-
idence that the Gamma distribution approximation for z2

d,n, using
M-S, works well. To clarify which spatial and orientation bins are
used, Fig. 3 and Fig. 4 present the conventions we use for numbering
them. Fig. 5 and Fig. 6 present estimated distributions for different
orientation and spatial bins, using both the SMVS and the CNN2h
datasets, plotted against ground-truth distributions measured from
data. These figures show the estimated distributions using M-IID and
M-S, plotted for ∆v1, ∆v2 and ∆v3 (as described in the experi-
mental section of the main part of this paper). We can infer that the
M-IID models (in green) estimate the distributions poorly. The M-S
model (in red) estimates the ground-truth distributions much better,
certainly capturing the main trends.
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Fig. 5: Estimated and ground-truth distributions for z2

d,n, using M-IID and M-S, with translation errors ∆v1, ∆v2 and ∆v3, using the SMVS dataset. In these
plots, (a) d = 1, (b) d = 2, (c) d = 3, (d) d = 4, (e) d = 5, and (f) d = 6, all with n = 3.
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Fig. 6: Estimated and ground-truth distributions for z2

d,n, using M-IID and M-S, with translation errors ∆v1, ∆v2 and ∆v3, using the CNN2h dataset. In
these plots, (a) d = 3, (b) d = 4, (c) d = 5, (d) d = 6, (e) d = 7, and (f) d = 8, all with n = 10.


