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ABSTRACT
We address the challenge of using image queries to retrieve video
clips from a large database. Using binarized Fisher Vectors as global
signatures, we present three novel contributions. First, an asymmetric
comparison scheme for binarized Fisher Vectors is shown to boost
retrieval performance by 0.27 mean Average Precision, exploiting
the fact that query images contain much less clutter than database
videos. Second, aggregation of frame-based local features over shots
is shown to achieve retrieval performance comparable to aggregation
of those local features over single frames, while reducing retrieval
latency and memory requirements by more than 3X. Several shot
aggregation strategies are compared and results indicate that most
perform equally well. Third, aggregation over scenes, in combination
with shot signatures, is shown to achieve one order of magnitude
faster retrieval at comparable performance. Scene aggregation also
outperforms the recently proposed aggregation in random groups.

Index Terms— image-based retrieval, temporal aggregation,
video indexing, video search

1. INTRODUCTION AND RELATED WORK

This paper addresses the problem of retrieving relevant videos from
a large database, using an image as the query. This is an important
retrieval problem, enabling applications such as: searching video
lectures using a slide, organizing video archives, advertisement moni-
toring, or content linking, where an image in a webpage could link
to an online video. Several aspects distinguish this problem from
the common problem of searching an image database using image
queries. First, the database size: if videos are treated simply as a
collection of individual and unrelated frames, searching a large video
database might require extremely large memory footprint. Second,
there is a clear asymmetry between the query, which is an image, and
the database items, which are videos. Third, the visual information in
the database is redundant, since videos are temporally coherent.

A first solution to this problem, Video Google as proposed by
Sivic and Zisserman [1], was inspired by text retrieval systems based
on the Bag-of-Words (BoW) model: low-level image features such as
SIFT descriptors [2] are quantized into visual words and inserted in an
inverted index. Query-by-image video retrieval has gained increased
interest thanks to the TRECVID Instance Search challenge [3], where
a query is composed of a small set of frames, together with region-
of-interest masks. More recently, aggregating local features into
global image signatures has shown great success in image retrieval
[4, 5, 6]. Hence, in this work, we employ the state-of-the-art Scalable
Compressed Fisher Vectors (SCFV) [6] as our aggregation method.
Our paper presents three contributions, summarized in the following
paragraphs.

Asymmetric comparison: A query image often only covers a
fraction of its best-matching item in the database. That item therefore
contains a fair amount of ‘clutter’, which leads to an asymmetry
between the query and the entries in the database. For example, in

query-by-image video retrieval, the Fisher Vector (FV) of a video
segment might capture local features from several frames – making it
highly likely that many of those features are not present in the query
image. [7] has empirically verified this asymmetry in the context of
the BoW model and proposed an asymmetric query-adaptive compar-
ison. Analyzing a large number of bounding boxes in each database
image is another recent strategy to handle this asymmetry [8], at
the price of much increased complexity. As our first contribution,
we instead propose an asymmetric comparison scheme for binarized
Fisher Vectors in Sec. 3, which is simple to implement, accelerates
retrieval, and provides substantial retrieval performance boost.

Evaluation of shot aggregation schemes: Aggregation of
frame-based local features over shots is a well-established technique
for improving video retrieval [9, 10]. In this work, we are interested
in finding the best way to aggregate these features over shots – an
evaluation which is performed using a large-scale database. For
example, can we improve performance by tracking local features
and collapsing features from the same track into a single unit before
aggregation into a shot signature? A similar approach was explored
in [11], but yielded poor results. We address this issue in Sec. 3
by comparing three different aggregation schemes which compute
signatures from local features extracted from multiple frames in the
same shot. Retrieval performance surprisingly hardly varies between
those schemes – however, retrieval latency and memory requirements
can be reduced by a factor of three, compared to a frame-based
aggregation baseline. Note that such shot aggregation is different
from the aggregation that is done in [1, 12], where local descriptors
are aggregated over tracks, but each frame is indexed independently.

Scene aggregation schemes: Theoretically, when aggregating
more and more local features, the resulting Fisher Vector should be-
come less discriminative and eventually converge to the zero vector.
We explore this behavior in Sec. 4 by aggregating frame-based lo-
cal features over long video segments. Our experimental evaluation
shows that signatures aggregated over scenes, even if they include
many features, are still discriminative. These scene signatures can
be combined with shot signatures in a retrieval system that achieves
similar performance to frame-based schemes, but reduces computa-
tional cost by more than 10X. The aggregation of global signatures
from several images into a single group signature has recently also
been explored in the context of image retrieval [13]. That paper
proposed a group testing framework, where the image collection is
partitioned into random groups and a signature is computed for each
group. We implement this method in the context of our problem,
assigning shot signatures to random groups. Our experiments show
that our proposed scene signatures outperform such random grouping.

In the remainder of this paper, we first present the experimental
evaluation procedure common to all our experiments, and then present
the individual contributions in detail.



2. EXPERIMENTAL SETUP

Our experiments make use of the Stanford I2V dataset [14]. The light
version of the dataset is used for experimentation with different tech-
niques and parameters throughout the paper, and we provide results
for selected methods on the full dataset. The Stanford I2V dataset
is much larger than similar-purpose ones: the full (light) version
contains 3,801 (1,035) hours of video in the database, spread across
84,443 (23,437) clips, and 229 (78) queries. Using a 1 fps frame
rate, we obtain 13,966,820 (3,808,760) video frames. In this dataset,
each video clip corresponds to a ‘scene’ [15, 16, 17], i.e., a concise
segment of video that contains interrelated shots and represents a
semantic unit for the given type of content. In this case, the scenes
correspond to news stories.

We consider the problem of Scene Retrieval: given an image
query, the system is expected to retrieve the relevant scenes in the
database. In the following sections, we experiment with global sig-
natures based on shots, scenes, and individual frames. Although
these signatures can be quite different, the retrieval process is the
same: the image query signature is compared to every signature in
the database. Performance is evaluated using mean Average Precision
(mAP) over a ranked list of the top 100 retrieved scenes. If frame (or
shot) signatures are used, a scene score is defined as the best score
among its frames (or shots).

We use SIFT detector and descriptors [2] in all experiments.
The 128D SIFT descriptors are reduced to 32D with a PCA step.
Those dimensionality-reduced local descriptors are then aggregated
into global signatures using the state-of-the-art Scalable Compressed
Fisher Vector (SCFV) framework [6], which has been selected by the
MPEG Compact Descriptors for Visual Search (CDVS) subgroup for
adoption into the CDVS Test Model. The retrieval procedure can be
performed efficiently, since bitwise comparisons can be evaluated
with dedicated CPU instructions. Note that additional speed-up could
be obtained for any of the techniques presented in this work by using
complementary techniques, such as an inverted index [6], multi-round
scoring [5] or parallelization. Similarly, we do not make use of re-
ranking strategies such as geometric consistency checks based on
local features, which could also improve performance for all of the
methods presented in this paper.

In our experiments, we consider retrieval performance as a func-
tion of the required number of bitwise comparisons, which is the
number of bits in all database signatures that are used during retrieval.
For example, the use of 1 fps frame-based SCFV signatures with 512
Gaussians on the light dataset would require 6.2 × 1010 operations.
For further reference, in this baseline configuration, our system takes
on average 15 seconds per query on a single thread on an Intel Xeon
2.4GHz processor.

3. SHOT AGGREGATION

In this section, we evaluate the aggregation of frame-based local fea-
tures over shots. Shot boundary detection is performed by comparing
HSV histograms using L1 distances, which finds 1,185,227 shots
in our database, with an average duration of 3.42 seconds. A scene
contains 50.57 shots on average. We experiment with 4 different
aggregation modes. Our emphasis here is on a large-scale evaluation
of shot aggregation schemes.

3.1. Aggregation modes

Local feature aggregation (LOC): All features from a selected
number of frames per shot are aggregated into a single SCFV signa-
ture per shot.
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Fig. 1: Retrieval performance on the light dataset as a function of the required number
of bitwise comparisons and α, using shot aggregation with LOC mode and 10 frames
per shot. For each curve, we vary the number of Gaussians used in the global signature
within {128,192,256,512}.
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Fig. 2: Retrieval performance on the light dataset as a function of the average number
of used frames per shot, using 512 Gaussians, for different shot aggregation modes. For
each curve, we vary the selected number of frames per shot within {1,2,5,10, all}.

Global signature aggregation (GLOB): First, we extract FV
signatures for a selected number of frames per shot. These FV signa-
tures are summed and the resulting floating-point vector is binarized
based on each dimension’s sign – similar to SCFV’s binarization.

Tracking-based aggregation (TRACK): First, we find tracks
within each scene, by grouping extracted keypoints in consecutive
frames if they are similar and nearby. Second, the local descriptors
within a track are averaged within each shot. Finally, the averaged
track descriptors in a shot are aggregated into a shot SCFV signature.

Independent frame aggregation (INDEP): SCFV signatures
for a selected number of frames per shot are used. In this case, no
shot aggregation is performed. This mode is used to test whether
shot-based signatures have an advantage over simply keeping some
frame-based signatures per shot.

For modes LOC, GLOB and INDEP, we use a selected number
of frames per shot. In this case, frames are selected by subsampling
the 1 fps stream in regular intervals within the shot. In case there are
fewer frames in a shot than the selected number of frames, we simply
use all frames from the given shot.

3.2. Asymmetric Comparisons

In query-by-image video retrieval, a query and its matching database
entry often have a ‘containment relationship’: for example, a large
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Fig. 3: Retrieval performance on the light dataset as a function of the required number
of bitwise comparisons, for different shot aggregation modes. For each curve, we vary
the number of Gaussians used in the global signature within {128,192,256,512}.
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Fig. 4: Normalized histogram of track lengths, as a proportion of shot lengths, on the
Stanford I2V light dataset [14], for matching and non-matching database tracks.

part of a query image may be contained in a relevant database shot,
while the reverse is not true. This asymmetry can be exploited to
boost retrieval performance. Specifically, the presence of elements
in a query signature but absence in a database signature should be
penalized more heavily than the absence of elements in a query
signature and presence in a database signature. This was explored
in [7], in the context of retrieval using the BoW framework. We
propose an asymmetric comparison scheme for state-of-the-art FV-
based methods. Note that we use FVs that make use of gradients only
with respect to the mean, which is the most common setting [4].

Consider the d-dimensional gradient with respect to the i-th
Gaussian in the model, denoted by Gi (in our case, d = 32). These
d components in the query signature are taken into account if and
only if ∥Gi∥1 > α, where α is a parameter we set empirically – whose
optimal value might depend on the type of aggregation. If ∥Gi∥1 ≤ α,
this indicates that information about local descriptor patterns consid-
ered by the i-th Gaussian is not strongly present in the query – thus,
we simply ignore those d components, not taking them into account
when comparing query and database signatures. Fig. 1 presents re-
sults using LOC mode with 10 frames per shot, varying α and the
number of Gaussians. Note that using α = 0 corresponds to not using
asymmetric comparisons. Substantial performance improvements are
obtained, of up to 0.27 mAP. This result might be surprising consid-
ering that we are discarding information from some Gaussians in the
model, i.e., using a smaller bitrate, yet boosting retrieval performance.

We decide to use α = 7 in all shot-based experiments – this value
provides near-optimal mAP for all modes. Similar improvements
can be obtained for frame-based and scene-based signatures. We use
αframe = 8 for frame-based signatures and αscene = 6 for scene-
based signatures in all experiments (unless otherwise specified), as
these values provide best mAP for these methods. Another benefit of
this asymmetric comparison technique is that the number of required
bitwise comparisons slightly decreases. Note that we have decided not
to reflect this decrease in our plots, since the gain is query-dependent
and makes the interpretation of the plots more complex.

3.3. Comparison of different modes

For modes LOC, GLOB and INDEP, we experiment with selecting
1, 2, 5, 10 or all frames within a shot. Note that INDEP with all
frames per shot is exactly the same as indexing each frame in the
database with a frame-based signature. Fig. 2 presents results for
these modes as we vary the selected number of frames per shot,
using 512 Gaussians in the global signatures. The actual average
number of frames per shot that ends up being used is much smaller
than the selected number, since many shots are very short. In general,
significant gains can be obtained by using multiple frames per shot, of
up to 0.07 mAP. This gain agrees with [18], which reports improved
performance when more frames are used.

In Fig. 3, we compare retrieval performance of the 4 modes in
terms of the number of bitwise operations in the retrieval process, by
varying the number of Gaussians. For GLOB and LOC modes, we
only show results selecting all frames per shot, since this selection
is among the best, as in Fig. 2. Note that the number of bitwise
operations for modes GLOB and LOC is independent of the selected
number of frames per shot. Performance is similar for modes GLOB,
LOC and TRACK. INDEP mode can achieve similar performance,
but at the cost of more comparisons during the retrieval process. More
specifically, using 512 Gaussians, INDEP-all achieves 0.02 mAP
improvement over LOC-all, at 3.21X slower retrieval. Overall, our
experiments indicate that shot-based aggregation might be preferred
over frame-based aggregation, since the former achieves comparable
retrieval performance with much smaller computational complexity
and memory footprint.

The fact that TRACK mode works similarly to GLOB and LOC
modes can be understood by considering Fig. 4, which presents
histograms of database track lengths, as a proportion of shot lengths.
In this plot, we distinguish between matching and non-matching
database tracks, i.e., tracks whose local features can be successfully
mapped to a query local feature or not – this is found by a matching
process between query images and ground-truth video frames, based
on local features and using geometric consistency checks, as in [2].
Given the assumption that long tracks are more often non-matching
tracks, the use of TRACK mode could reduce their influence such that
the global signatures would be less influenced by clutter. However,
the statistics of matching and non-matching tracks are very similar,
and we cannot expect much difference in retrieval performance.

4. SCENE AGGREGATION

Shot aggregation allows 3X retrieval speed-up, while achieving high
mAP. In this section, we consider ways to reduce retrieval complexity
even further, by developing scene signatures. These allow a very fast
first pass over the database to select a small number of candidate
scenes that will be post-processed. First, we consider grouping shot
signatures for faster retrieval. Then, we investigate different design
choices for scene signatures.
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Fig. 5: Retrieval performance on the light dataset as a function of the required number
of bitwise comparisons, for different group aggregation modes. For each curve, we vary
the number of groups that are re-ranked within {0,100,500,1000,5000,10000}.

4.1. Grouping shot signatures

In recent work, Shi et al [13] present a group testing framework to
speed up image retrieval in large databases. Their approach works by
grouping database images at random, and summing up their FVs to
construct a single signature for each group of images. At querying
time, the exact similarity scores for images in top-ranked groups are
computed, and these images are ranked according to their similarity.

We consider a variant of this set-up, where we want to group shot
signatures to obtain faster retrieval. In our case, however, we can take
advantage of the underlying structure from the video database: We
propose to assign each shot signature to a group constituted by all
shots from its scene. In other words, each group corresponds to a
scene, and its group signature is constructed from the signatures of
each shot belonging to that scene.

We compare this approach to [13]’s random grouping. Instead of
raw FVs, we use SCFV signatures, to allow fast retrieval in a large
database. FVs for each shot signature are computed and a group
signature is obtained by first summing up the constituent FVs, then
binarizing the result based on each component’s sign. We assign
each shot to one group – as assigning each item to one group shows
near-optimal performance in [13]. For a fair comparison, the number
of random groups is set to 23,437, the exact number of scenes in
our database. During retrieval, we re-rank a certain number of top-
ranked groups by obtaining the exact similarity scores for each of its
constituent shots, similar to [13]’s procedure. For the shot signatures,
we use LOC mode with 10 frames per shot and 512 Gaussians.

Note that scene groups can be scored directly, without re-ranking
(i.e., re-ranking 0 groups) – since a ranked list of scenes is directly
obtained even without re-ranking in this case. This cannot be done
for random groups, in which case it is necessary to obtain shot scores
to then be able to rank scenes. Fig. 5 presents curves obtained by
varying the number of re-ranked groups. It shows clearly that scene
groups outperform random groups, for the setting with 512 Gaussians,
by up to 0.09 mAP. This is intuitive, as scene groups might contain
several shots in which the query is shown, increasing the chance that
a true matching scene will be ranked higher.

4.2. Scene signature design

We consider other scene signature designs. In particular, we exper-
iment with scene signatures constructed directly from frame-based
local features. The experimental setup here is the same as in the
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Fig. 6: Retrieval performance on the full dataset as a function of the required number of
bitwise comparisons, for the best scene- and shot-based aggregation methods, compared
to the baseline frame-based methods with and without asymmetric comparisons. In this
case, the re-ranking for the scene-based scheme uses shot signatures with mode LOC
and all frames per shot. The number of re-ranked scenes is varied from 0 to 50000.
Note the logarithmic scale for the x-axis.

previous subsection, with the only change being the scene signature
that is utilized.

Scene signatures from local features: We experiment with two
other scene signature aggregation modes: LOC (in this case, using
all frames in the scene), and TRACK. Aggregation happens in the
same way as presented in 3.1, except that it is now done over scenes,
not shots. In this experiment, we once again use 512 Gaussians,
for a fair comparison against scene groups. Fig. 5 shows an overall
similar retrieval performance of scene groups, LOC and TRACK.
LOC presents a slight advantage when a small number of scenes are
re-ranked, of up to 0.05 mAP compared to scene groups.

Scene signatures with higher number of Gaussians: For fur-
ther performance improvement, we increase the number of Gaussians
used in scene signatures to 1024 and 2048, using LOC aggregation
mode with all frames per scene. Fig. 5 shows a substantial perfor-
mance boost, achieving more than 0.10 mAP improvement over LOC
using 512 Gaussians.

Comparison of frame-, shot- and scene-based aggregation on
the full dataset: Fig. 6 presents a comparison between the baseline
frame-based and the best scene-based and shot-based approaches,
on the full dataset. Using scene signatures, we are able to achieve
10.35X faster retrieval with a small mAP drop (0.04 mAP), compared
to the frame-based method that uses asymmetric comparisons.

5. CONCLUSION

In this work, we introduce new temporal aggregation strategies for
query-by-image video retrieval. We demonstrate substantial improve-
ment in retrieval quality for systems based on binarized Fisher Vectors
when using an asymmetric comparison technique. Several shot-based
aggregation techniques are evaluated and shown to achieve similar
retrieval performance to frame-based aggregation schemes, with a
3X speed-up. Scene-based aggregation is introduced and shown to
outperform a grouping scheme based on random assignments. Using
scene signatures in combination with shot signatures, we design a
retrieval system that achieves 0.21 mAP improvement and one order
of magnitude smaller computational cost, compared to a baseline
frame-based scheme that does not use asymmetric comparisons.
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