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ABSTRACT
Reproducible research in the area of visual search depends on
the availability of large annotated datasets. In this paper, we
address the problem of querying a video database by images
that might share some contents with one or more video clips.
We present a new large dataset, called Stanford I2V. We
have collected more than 3,800 hours of newscast videos
and annotated more than 200 ground-truth queries. In the
following, the dataset is described in detail, the collection
methodology is outlined and retrieval performance for a
benchmark algorithm is presented. These results may serve
as a baseline for future research and provide an example of the
intended use of the Stanford I2V dataset. The dataset can be
downloaded at http://purl.stanford.edu/zx935qw7203.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
query-by-image, video dataset, video indexing, video search

1. INTRODUCTION
Visual search is the problem of indexing and querying a

large collection of visual data. There exist several variations
of this problem, depending on the type of content in the
database and the type of query. For example, image-to-
image (I2I) visual search can be used for product search
using an image taken with a mobile device. Video-to-video
(V2V) is commonly used for copyright enforcement in online
video-sharing websites. Video-to-image (V2I) is useful for
augmenting the world seen by a head-mounted camera. Yet
another flavour is image-to-video (I2V) visual search, where
an image-based query is issued to retrieve relevant videos.
Example applications for I2V are advertisement monitoring,
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video lecture search using slides, organizing and searching a
personal video collection or an archive of video, and content
linking where a relevant video has to be found based on an
image from a certain event (e.g., from a website or news
article). The last example is especially challenging since
the query image can contain substantial geometric as well
as photometric distortion with respect to the frames in the
video sequence showing the same event or object. Moreover,
in some cases, the query depicts a clean image which is free
of any background clutter present in the frames of the video,
introducing another asymmetry between query images and
frames in the database.

While preparing a database for large-scale I2I search exper-
iments is already challenging, doing the same for I2V search
is even more difficult. The handling of video data (ie., ac-
quisition, processing, building and searching data structures)
is much more involved, due to the significantly larger data
volume. Ground truth annotation with sub-second temporal
accuracy can be extremely tedious and time-consuming.

Due to these reasons, previous work was mostly limited to
evaluations on small or medium scale benchmark datasets.
However, we think that I2V is now at a stage where algo-
rithms and systems have to be evaluated on a larger scale
to draw conclusions about their performance. Hence, in
this paper, we introduce a new dataset called Stanford I2V,
consisting of more than 3,800 hours of newscast video and
more than 200 queries with ground-truth annotations. We
refer to Fig. 1 for an illustration of some queries and relevant
video keyframes. The full dataset can be downloaded at
http://purl.stanford.edu/zx935qw7203.

In the remainder of this paper, we discuss related work,
present Stanford I2V in more detail, outline how the dataset
has been collected, and define an evaluation procedure. Fur-
thermore, we present a baseline algorithm which illustrates
how the dataset can be used.

2. RELATED WORK
Since our main focus is on I2V visual search, we refer the

interested reader to recent work [20], the YouTube dataset
[14], the HMDB dataset [13] and references therein for more
details about V2V (note that these datasets are designed for
action recognition rather than retrieval purposes).

Compared to I2I, there is surprisingly little previous work
addressing the problem of I2V visual search. One of the
early I2V milestones is Sivic and Zisserman’s Video Google
work [18, 19] where techniques from text retrieval have been
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Query images Database videos (selected frames) 

Figure 1: Examples of query images (left) and database video frames (on the right).

Dataset Name
Avail-
ability Size Type of Video # Que-

ries
Type of Query Unit of

Retrieval

Video-Google [18] no 2h Movie: ‘Run Lola Run’ 164
Entire frames from 48 shots
taken at 19 different locations

Keyframe

Video-Google [18,
19]

no 2h
Movie: ‘Run Lola Run’, ‘Groundhog
Day’ 8

Small region-of-interest in a
frame.

Shot

TRECVID-INS13
[16]

yes 464h TV soap opera: BBC EastEnders 30
Region-of-interest in up to 4
frames

Shot

CNN2h [5] yes 2h Newscast: 2 newscasts from CNN 139
Images collected from websites
and photos taken from a screen

Keyframe

Stanford I2V (Ours) yes 3,800h Newscast: 39 recurring newscasts from
25 channels

229
Images collected from news
websites

Scene and
segment

Table 1: Comparison of I2V datasets: The second column denotes whether the dataset is publicly available. We see that our new Stanford
I2V dataset is orders of magnitude larger than any previous dataset. Newscast videos are less constrained than ‘closed worlds’ such as
movies or soap operas and thus expected to be more challenging.

adapted to be applicable for I2V retrieval. They addressed
two retrieval scenarios: the first uses an entire frame from
a movie as a query to find other frames in the movie which
show the same location, whereas the second one uses a small
region-of-interest in a frame to select an object of interest
which then is detected in the remaining frames.

The dataset released by the TRECVID Instance Search
(INS) challenges [16] is most closely related to ours. We

refer the interested reader to the TRECVID website1 for
more details about challenges of previous years – here we will
focus on the most recent editions of this challenge which used
footage from the BBC soap opera EastEnders. A query in
that dataset consists of regions-of-interest in up to four frames
which denote the outline of an object of interest. While the
TRECVID dataset is certainly an improvement over existing
datasets, it is still an order of magnitude smaller both in

1http://trecvid.nist.gov

http://trecvid.nist.gov


database size and number of queries as our new Stanford
I2V dataset. Moreover, all the previously described datasets
consider a ‘closed world’ and therefore reflect the variety of
real footage only to some extent: the queries and frames in
the database are from a movie or soap opera and hence show a
limited number of people, objects and locations. The ‘closed
world’ problem is also evidenced by the fact that queries are
based on entire frames or regions-of-interest of a frame and
therefore use almost exactly the same underlying pixel values
as the frames contained in the database. This ignores several
important distortions, as mentioned in Sec. 1. Motivated by
these shortcomings, we have recently introduced the CNN2h
dataset [5] which contains 2 hours of newscast from CNN.
Similar to [5], the queries of Stanford I2V are not regions-of-
interest of the original frames, but rather images which were
collected from news websites that reported about the same
event as a certain video. This mimics more realistic use-cases
for applications such as the ones mentioned above. The new
Stanford I2V dataset is however orders of magnitude larger
than the CNN2h (3,800 hours vs. 2 hours). We refer to
Tab. 1 for a comparison of previously used I2V datasets.

In summary, previous datasets for I2V (e.g., TRECVID
INS [16], CNN2h [5]) are simply not sufficiently diverse or
large enough to reveal the entire set of challenges involved
in indexing a large collection of videos.

3. DATASET DESCRIPTION
The Stanford I2V dataset is a large dataset to evaluate

the task of retrieving videos using images as queries. Tab. 2
provides statistics on the dataset composition. The full
version of the dataset contains 3.8k hours of video, distributed
across 84k video clips on average 2.7 minutes long. The light
version of the dataset is a subset of the full version, with the
intended use of faster experimentation. Each video clip in
our database corresponds to a single news story, segmented
from a full-length newscast. These story clips are assembled
from a coherent collection of successive shots which cover
a single event. Hence, each story clip usually contains tens
of shots. These story clips, in the context of news videos,
are the equivalent of ‘scenes’ [21, 22] for general-purpose
videos. While for some applications those scenes are the
appropriate unit of retrieval, there are other use cases where
a more fine-grained unit of retrieval is required. Hence, for
our dataset, we tried to strike a good balance and provide
annotations at two levels of granularity, namely at the scene
level and at the segment level. A segment is a subsequence
of a scene with an exact start and end point in which a query
contents is visible in the video.

The dataset is accompanied by a carefully selected set
of queries with ground truth annotations. Image queries
are collected from news websites, and they usually depict
important events. The full version of the dataset contains
229 queries. For each query image, we provide a list of all
database clips where it is found, along with a list of all precise
segments it is shown in the clips.

In order to mimic a broad set of applications, we define the
evaluation procedure for this dataset based on two stages,
reflecting the two levels of annotation granularity, see also
Fig. 2. In the first stage, called Scene Retrieval, the objective
is to return the correct story clips in the top of a ranked
list. The second stage is Temporal Refinement where, given
a story clip, the precise segments where the query image is
visible have to be found.

1st stage: Scene Retrieval 2nd stage: Temporal Refinement 

Ranked retrieval measures: 
•  Average Precision (AP) 
•  Precision at 1 (p@1) 

Unranked retrieval measure: 
•  Jaccard Index  

1 

2 

3 
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Figure 2: We define the search process based on two steps. First,
Scene Retrieval : the system returns a ranked list of the most
likely story clips to contain the query image. Second, Temporal
Refinement : if the user is interested in a given clip, the system
returns the specific segments within the clip that contain the query
image.

4. DATASET CONSTRUCTION

4.1 Collecting Videos
In previous work [8], we have developed a system that

records video newscasts (from cable boxes, over-the-air an-
tennae and video-sharing websites) and segments them into
individual stories. Using data resulting from that system,
we have demonstrated a real-time system that searches the
most recent clips using images [4]. In this work, we consider
this scenario at a much larger scale. Our video database is
composed of all video clips collected (by the system from
[8]) from October 2012 to (and including) September 2013,
from 39 different recurring newscasts in 25 different channels.
Tab. 2 reports some statistics from this video collection.

4.2 Query Set Selection
To find candidate query images for our video database, we

used the Internet Archive’s Wayback Machine [3]. This tool
allows users to browse archived versions of a large number
of webpages. For major websites, several webpage captures
are stored per day.

Two annotators browsed archived webpages for each day
in the date range of October 1st, 2012 to September 30th,
2013. The annotators accessed webpages from many differ-
ent news organizations, usually using Google News [2] as a
starting point for each date. 805 candidate query images
were collected.

Two types of images were collected: 1) iconic images, i.e.,
images of events that were reported in the news, and 2)
magazine covers from “The Economist” and “Time”. For each
collected image, we recorded the date it was published online.
The collected images are more likely to be shown in news
videos that were broadcast around the image’s publishing
date. During the annotation process, we take advantage of
this observation, as explained in the following subsection.

4.3 Ground Truth Annotation
The annotation pipeline is illustrated in Fig 3. It contains

multiple stages, some of them automatic (in blue) and some
of them manual (in orange). Three trained annotators partic-
ipated in the manual stages. Since the database is composed
of videos, we annotate ground-truth video sequences, instead
of ground-truth frames. For example, if query image 32 is
shown in video clip 21 from 0:38 to 1:34, then this video
sequence is one of the ground-truth sequences for query 32.



# Video hours # Queries # Video clips
# Keyframes @

1fps
Average clip

duration (min.)

Full version 3,801 229 84,443 13,966,820 2.70
Light version 1,035 78 23,437 3,808,760 2.65

Table 2: Statistics of the Stanford I2V dataset. The light version of the dataset is a subset of the full version.

Query image 

Query date Jan. 7th, 2013 

Select all videos 
within 1 week of 

query date 

Approve 
matches 
manually 

SCFV-based 
search 

Reject query if no 
approved matches 

Feature-based matching + RANSAC 

Accept query if 
there are approved 

matches 

Select 
matches 
manually 

Match query 
against each frame 

individually 

Annotation 
of video 

sequences 

Figure 3: Block diagram of our annotation pipeline. Tasks in blue
correspond to automatic stages, while tasks in orange correspond
to manual stages. We use frames extracted from videos at 1 fps.

We compute SIFT features [15] (on average, 300 per video
frame) and Scalable Compressed Fisher Vector (SCFV) global
signatures [9] for each candidate query image and for each
frame extracted at 1 fps from the database videos. We
exploit the fact that the types of queries we consider are time-
sensitive, i.e., they are more likely to have been broadcast in
a certain date range. The different steps in the annotation
process are described in more detail in the following.

Feature-based Matching + RANSAC. In this stage,
we perform a fine-grained search of clips that are more likely
to contain the candidate query image. All clips within 1
week of the candidate query image date are used. Since the
image usually comes from a news piece, after 1 week the
particular event is unlikely to be discussed in news videos.
The candidate query image is matched against each frame in
each clip in the selected time frame. We use the feature-based
matching process of [15], using the ratio test. The feature
matches are then verified geometrically using RANSAC [10]
with an affine model. We declare a match if the discovered
geometric model between the query image and the video
frame finds at least 10 inliers.

Approve matches manually. Once we have candidate
matches between query images and video frames, annotators
visually inspect them to decide if they are valid. At this
stage, we consider a match to be valid if at least part of the
query image is shown in the video frame. After this step, if
all candidate matches are rejected, then the candidate query
is discarded. Otherwise, we continue the process as follows.

SCFV-based search. Even though the query image is
more likely to be shown in news videos within a certain
date range, we still need to make sure it does not appear
in the rest of the videos in our database. We search the
entire video database using the SCFV global descriptor,
which provides a fast way to generate candidate video frames
more likely to contain the query. Each video frame in the
database is described using the SCFV descriptor with 192
Gaussian mixture components. The SCFV global descriptor
is presented in more detail in 5.2.

The 2,000 video frames with smallest global signature
distance to the query are further re-ranked using the same
feature-based matching and RANSAC scheme as described
previously. The final ranked list of candidate frame matches
is ranked first by the number of inliers, then by closeness of
the SCFV global signature. Since the clips within 1 week of
the query publishing date were already considered in the first
step, in this step only the remaining clips in the database
were analyzed.

Select matches manually. The annotators visually in-
spect the ranked list of video frames resulting from the
previous step. Whenever a new correct frame match is found,
the corresponding clip is selected and added to the list of
ground-truth video clips for the query under consideration.

Annotation of video sequences. At this point, a set of
video clips are known to contain the query image, from the
outcome of the previous steps. One annotator will watch each
ground-truth clip and record the exact time sequences where
the query image is shown. Note that multiple ground-truth
sequences might exist for a ground-truth clip.

For some queries, some potential matches were ambiguous.
For example, queries would depict an event from a given angle
and the video would show the event from a very different
angle, such that the visual similarity would be very small.
This scenario was considered in a case-by-case basis by the
annotators, and we made sure that the annotations were
consistent for all queries. If the annotation for a certain
query were too ambiguous, the query was simply discarded.

Post-processing. It is still possible that some ground-
truth video matches have been missed using the method
outlined in this section, since it is not feasible for the anno-
tators to compare all 3,800 hours of video with each query.
For this reason, we continue to visually inspect the retrieval
results produced by algorithms we experiment with. It has
been necessary to add annotations in only a few cases so far.
If any additional missing annotations are discovered in the
future, we will update the dataset accordingly.

5. EVALUATION METRICS
In this section, the performance assessment protocol for

the Stanford I2V dataset is presented. We also describe
experimental results using a standard image retrieval system,
which may serve as a baseline for future research.

5.1 Experimental Setup
We divide the experiments for this dataset in two stages.

Fig. 2 illustrates an example. First, the system retrieves
from the large database those clips that are more likely to
contain the query image. This first stage is called Scene
Retrieval, since each clip in our case corresponds to a scene
(a news story). We choose to use story clips as the unit of
retrieval in this type of application, since they are concise (on
average 2.7 minutes) and meaningful by themselves. Note
that related work typically considers retrieval based on shots
[16] or frames [5].
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Figure 4: Mean Average Precision (mAP) as a function of mean
Scene Retrieval Latency (mRetLatency) for the light and full
versions of the Stanford I2V dataset.

The first step is considered a ranked retrieval type of
problem, and we measure performance in this case using
Average Precision (AP) and Precision at 1 (p@1). Average
Precision assesses the quality of the returned ranked list of
results and is useful in applications where a list of potential
results is shown to the user. Precision at 1 is important
in cases where the best result is directly returned to the
user (for example, in the case where the system would start
playing the best clip match without further interaction with
the user).

In the second step, if the user is interested in a particular
clip, the system should indicate which points in time in the
clip the query image was found. We denote this second
step Temporal Refinement. In practice, the system could
present these matches by showing ticks on the video player.
For this second stage, we have an unranked retrieval case,
where a match should be presented to the user if the system
is confident enough. Since the system may retrieve one
or more segments within each ground-truth clip, we assess
performance in this case using the Jaccard index. In this
case, the Jaccard index is computed by the ratio between
the intersection of the retrieved and ground-truth sequences,
and their union. This has also been called ‘overlap accuracy’
in the literature of activity detection [6]. Implementations of
scoring functions are provided on the dataset website.

Note that, for Temporal Refinement evaluation, we con-
sider that the correct story clip is given, so the system only
needs to find the correct segments within the given clip. Also,
in practice, we observed that the precise time segment an-
notations might vary by up to 1 second due to the usage of
different video players. To avoid incorrect scoring, we intro-
duce 1 extra second at the beginning and at the end times
of the sequence. For example, if a ground-truth sequence
defined by our annotation process starts at 1:12 and ends at
1:23, we will score the retrieved sequence with respect to the
time segment starting at 1:11 and ending at 1:24.

In the experiments that follow, we also report results based
on query latency for the two steps (using a single core on an
Intel Xeon 2.4GHz processor) and total database memory us-
age. For results over a set of queries, we report mean Average
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Figure 5: Mean Precision at 1 (mp@1) as a function of mean Scene
Retrieval Latency (mRetLatency) for the light and full versions of
the Stanford I2V dataset.

Precision (mAP), mean Precision at 1 (mp@1), mean Jaccard
index (mJac), mean scene retrieval latency (mRetLatency)
and mean temporal refinement latency (mRefLatency).

5.2 Evaluation using standard image retrieval
approaches

In our experiments, we use the state-of-the-art global
image descriptor SCFV [9], which has been selected by
the MPEG Compact Descriptors for Visual Search (CDVS)
subgroup for adoption into the CDVS Test Model. The
number of Gaussian mixture components has been varied
K ∈ {128,192,256,512} to obtain a trade-off in terms of
retrieval, memory usage and search latency. In our case,
we simply use all Gaussian mixture components, without
making use of SCFV’s scalability option. We use Fisher Vec-
tors including only the gradients with respect to the mean,
which is the most common choice [12, 9]. Local descrip-
tor dimensionality reduction is performed using PCA and
keeping the 32 dimensions with largest variance, as in [9].
We use a separate set of images (from the INRIA Holidays
[11], Oxford Buildings [17] and Pasadena Houses [1] datasets)
to train GMMs, PCA and correlation weights. Note that
we implement a simple retrieval algorithm that compares
the query’s global signature to all frames’ global signatures.
Speed-up could be obtained by using an inverted index (at
the cost of additional memory usage) [9], multi-round scoring
[7] or parallelization.

Scene Retrieval stage. This SCFV-based scheme is used
for the Scene Retrieval stage, where we generate a global
signature for each keyframe in our database (extracted at
1 fps, see Tab. 2 for numbers). In this first step, we obtain
a ranked list of keyframes, according to the query’s most
similar signatures in the database. From this list, we obtain
the top 100 ranked scenes, where a scene score is defined as
the best score among all of its constituent keyframes. For
each query, we compute AP and p@1 based on the top 100
retrieved scenes.

Temporal Refinement stage. To evaluate the Tempo-
ral Refinement stage, we consider each ground-truth clip for
each query separately. For each ground-truth clip, we find



mAP mp@1 mJac

mRet-
Latency
[s]

mRef-
Latency
[s]

Index
size
[GB]

Light

K = 128 0.40 0.65 0.38 4.45 0.70 1.95

K = 192 0.42 0.67 0.38 5.97 0.70 2.93

K = 256 0.44 0.69 0.38 7.23 0.69 3.90

K = 512 0.46 0.73 0.38 12.75 0.73 7.80

Full

K = 128 0.33 0.57 0.42 16.21 0.80 7.15

K = 192 0.36 0.59 0.42 20.94 0.80 10.73

K = 256 0.40 0.62 0.42 25.73 0.78 14.30

K = 512 0.43 0.64 0.43 45.86 0.84 28.60

Table 3: Quantitative retrieval results for the light and full versions
of the dataset: K refers to the number of used Gaussian mixture
components.

the 50 most similar frames (in terms of SCFV signatures)
and try to find a geometric model between the query image
and the video frame using feature matching and RANSAC,
as in 4.3. A video frame is returned if at least 8 inliers are
obtained.

All results are reported for both light and full versions of
the datasets. Fig. 4 and Fig. 5 present Scene Retrieval results:
mAP and mp@1 as a function of mRetLatency, respectively.
Tab. 3 reports Temporal Refinement results and memory
usage for the different SCFV database indexes. In general,
a larger number of Gaussian mixture components leads to
better mAP and mp@1, at the cost of slower retrieval (higher
mRetLatency). Note that mJac and mRefLatency do not
vary much with the number of Gaussian mixture components,
since the search in this case is restricted to a clip. Scene
Retrieval latency and index memory usage increase roughly
linearly with the number of Gaussian mixture components.

6. SUMMARY
In this work, we introduce Stanford I2V, a new query-by-

image video search dataset. Compared to existing datasets,
Stanford I2V is more diverse and much larger. We introduce
the problem, applications and survey related work. The
methodology for data collection and ground-truth annotation
is described in detail. We also present experiments using
standard image retrieval techniques, serving as a baseline for
future evaluations and showcasing the intended use of the
Stanford I2V dataset.
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