
EFFICIENT VIDEO SEARCH USING IMAGE QUERIES

A. Araujo1, M. Makar2∗, V. Chandrasekhar3, D. Chen1, S. Tsai1, H. Chen1, R. Angst1 and B. Girod1

1 Stanford University, USA 2 Qualcomm Inc., USA 3 Institute for Infocomm Research, Singapore

ABSTRACT

We study the challenges of image-based retrieval when the database
consists of videos. This variation of visual search is important for
a broad range of applications that require indexing video databases
based on their visual contents. We present new solutions to reduce
storage requirements, while at the same time improving video search
quality. The video database is preprocessed to find different ap-
pearances of the same visual elements, and build robust descriptors.
Compression algorithms are developed to reduce system’s storage
requirements. We introduce a dataset of CNN broadcasts and queries
that include photos taken with mobile phones and images of objects.
Our experiments include pairwise matching and retrieval scenarios.
We demonstrate one order of magnitude storage reduction and search
quality improvements of up to 12% in mean average precision, com-
pared to a baseline system that does not make use of our techniques.
Index Terms— efficient video search, image-based retrieval

1. INTRODUCTION AND RELATED WORK
Visual search has become a widely studied topic. However, a large
body of visual content, namely videos, cannot be searched visu-
ally using today’s commercial systems. In this work, we explore
problems that arise when one searches videos using image queries,
which presents many practical use cases. Users might take a pic-
ture of a video to obtain information related to it. In online educa-
tion, a user might want to find the segment in a lecture video where
a particular slide is presented. A company might want to find all
appearances of its logo or a particular product in television broad-
casts. The fact that today’s commercial visual search systems do
not index videos is to a large extent a consequence of the enormous
redundancy of video when treated simply as a collection of indi-
vidual frames. We address this issue by introducing a method that
reduces system’s storage requirements dramatically while boosting
video search quality.
Our contributions are the following: (I) A method of finding and
combining different appearances of the same visual element, with
mathematical justification for both image pairwise matching and
image retrieval experiments – deriving more robust, temporally-
coherent descriptions. Our method improves video search quality
by up to 12% in mean average precision while achieving one order
of magnitude storage savings. Also, our method is more memory-
efficient than even a simple 10 times coarser video search technique,
with mean average precision improvements of 61.4% in this case.
These results show that we achieve a better discriminativeness-
invariance trade-off for this application. (II) A compression algo-
rithm that reduces significantly the storage requirements for descrip-
tors and that, when combined with other compression techniques,
allows for the previously mentioned storage savings. (III) We pro-
vide a comparison between several different ways of combining
different visual element appearances, with ours ranking among the
best. Also, somewhat surprisingly, this comparison shows that keep-
ing a descriptor for only one of the appearances might harm search
quality. (IV) We show that tracking keypoints is crucial to obtain
better video search quality and further reduced storage needs. Our

∗M. Makar performed the work while at Stanford University.

Queries& Database&

Fig. 1: Examples of query images and ground truth database frames from the CNN2h
dataset, introduced in this work.

experiments show that the new descriptions do not work as well if
we simply detect keypoints independently for each frame.
Related work. Previous work has explored video search by image.
Chen et. al. [1] introduced a technique to find a video from images
captured with mobile phones. TRECVID’s “Instance Search” task
[2] has evaluated systems that find repeated objects, persons or lo-
cations in a large video collection [3, 4]. Our method differs from
[1, 3, 4] since we explicitly combine different appearances of the
same feature to construct a more robust representation – which also
makes our database storage very compact.
Sivic and Zisserman illustrated the effectiveness of the Bag-of-
Words framework with a movie [5], and enhanced search for regions
of video frames with different tracking methods [6]. By using a
Temporally Coherent Detector (TCD) [7], and matching frames to
join tracks, our approach is reminiscent of [6]’s, in the sense that it
uses short- and long-range tracking methods. However, our usage
of TCD makes the keypoint tracks more stable due to systematic
tracking on the canonical patch level – compared to [6]’s method of
tracking only when a keypoint is missing. One of our key findings
demonstrates that, when using temporal aggregation, TCD keypoints
perform better than keypoints that are detected every frame (as used
in [6, 5]). This is shown by superior retrieval and pairwise matching
results using a smaller storage footprint. Compared to [8, 6, 5], our
dataset is much larger and much more challenging: it contains 139
queries, from photos taken with significant distortions and images of
objects collected from the web – compared to [6, 5, 8]’s 6 queries,
taken from regions of frames in the same database video.
Sivic and Zisserman [5] argue that averaging descriptors in a track
improves signal-to-noise ratio, but without evaluating this idea. We
build on top of this idea to introduce a good justification for averag-
ing and demonstrate quantitative improvement in search quality and
database storage when using averaged descriptors. Descriptor aver-
aging was also explored by Takacs et al. [9] in a landmark recog-
nition application. Our work differs from [9] since we work with
video search, use temporal coherence for averaging, justify the use
of averaging and compare different aggregation options.
On the compression side, recent work considered compression of
descriptors [10, 11, 12], inverted index structures [13] and locations
[14]. In this work, we focus on storage gains which arise naturally

when using the same robust aggregated descriptor for a large num-
ber of keypoints in the database video frames. Moreover, we design
compression algorithms to encode indices that make for a large por-
tion of storage needs.

2. FINDING AND AGGREGATING VISUAL ELEMENTS
We use the expression ‘visual element’ to indicate image patches
that represent the same part of a specific visual structure in different
frames. For example, two image patches corresponding to a specific
wheel of a specific car in two different frames represent the same
visual element. But two descriptors that represent parts of different
visual structures (e.g., a car and a tree) do not represent the same
visual element, even if they are close in terms of descriptor distance.
Our objective is two-fold. First, to generate a more robust rep-
resentation of a visual element, by aggregating their appearances
throughout the video under different conditions, such as different
viewpoints and illumination. Second, to enable search in very large
video datasets, by dramatically reducing descriptor storage needs.
We collect different appearances of visual element m in a Tempo-
rally Aggregated Patch Set (TAPS) tm, which we define as a set of
patches pi, i ∈ {1, ..., nm}, where nm = |tm|. These patches rep-
resent visual element m under different conditions. Each patch is
assigned to exactly one TAPS. We represent TAPS tm by a TAPS
descriptor, φm, which we define as a function of patches that are
assigned to tm, i.e., φm = f(tm). A TAPS descriptor is the ag-
gregated representation we use for all patches of the same visual
element. In the following, we present how to detect and track visual
elements, then show their TAPS descriptors can be computed.

2.1. Keypoint Detection and Tracking
We experiment with two different ways of finding keypoints in video
frames. The first approach detects keypoints for each frame indepen-
dently (ID - Independent Detection), as in [5, 8, 6, 3, 4]. The second
option is to use a Temporally Coherent Detector (TCD) [7]. TCD
tracks keypoints on the canonical patch level (i.e., it searches for the
best location, scale and orientation for the keypoint localization in
the subsequent frames). When using ID, keypoints’ locations, scales
and orientations present significant variations in a single track, due
to the sensitivity of the detector. In contrast, TCD generates key-
points whose patches and descriptors are much more similar within
the same track [15].
In order to establish correspondences between tracks that are not
contiguous in time (due to temporary occlusion, for example), we
use a feature-based method for matching images, using a ratio test
followed by a geometric consistency check, similar to [16]. This
is similar to the long-range tracking approach of [6]. We use a pa-
rameter, Npm, to denote the number of frames within which we al-
low matching operations. In our experiments, we set it to 10 or 50
(equivalent to 1 or 5 seconds, respectively). This image matching
procedure is also used with ID mode to find feature tracks, for sim-
plicity. A TAPS is created containing all different patches within a
track, for each of the tracks that are found with this method.

2.2. TAPS description
After collecting repeated visual elements into a TAPS, we represent
each patch from a TAPS using the same TAPS descriptor. We con-
sider different ways to generate a TAPS descriptor:
Keep One (KO). We keep one of the patches from each TAPS, and
use it to compute a descriptor.
Patch Average (PA). Patches are rotated and scaled according to
their keypoint. Then, they are averaged and a descriptor is computed
from the mean patch. This is equivalent to averaging the gradients
of the different patches before descriptor computation.
Minimum Distance (MD). We keep all descriptors of the different
patches in a TAPS. To calculate the distance from a query descriptor
to a TAPS, we select the minimum distance between the former to
each of the descriptors of the latter – i.e., this mode calculates a best

case distance for comparison of a query descriptor and a TAPS. Note
that in this case we do not reduce descriptor storage requirements,
since we still need to keep each of the original descriptors.
Descriptor Average (DA). We extract descriptors from each patch
in a TAPS and average them. This follows naturally for pairwise
matching and retrieval scenarios, as follows.
Pairwise Matching. Consider matching a query image against a
video frame, where we find putative feature matches using the ratio
test from [16]. Consider matching the query descriptor q to the TAPS
t. An intuitive way to capture contributions from different patches
in a TAPS is to consider the expected square distance between q and
t. We can use Lowe’s ratio test [16] in its square version, by us-
ing square distances and a square threshold. Note that t is a set of
samples from the probability distribution for patches generated from
the same visual element. Let U ∈ RD (D being the descriptor di-
mensionality) be a random vector denoting the descriptor of a patch
drawn from the probability distribution sampled by t:

EU[‖q− U‖2] = EU[qT q− 2qT U + UT U] (1a)

= qT q− 2qTµ+
∑
i

[σ2
i + EUi [Ui]

2] (1b)

= ‖q− µ‖2 +
∑
i

σ2
i (1c)

where µ is the mean descriptor from t’s patches, σi the standard
deviation of component i of descriptors of patches from t and ‖x‖
is the L2 norm of x. This computes the dissimilarity between each
query descriptor and each video frame’s TAPS. Both terms in (1c)
can be computed by estimating and storing, for each TAPS, the mean
µ and one other number,

∑
i σ

2
i , a measure of intra-TAPS variance.

Retrieval. Consider a Bag-of-Words (BoW) model for retrieval, to
search a large number of video frames without matching the query to
each frame. Consider the construction of a codebook using a vector
quantizer. In this case, we want to minimize

∑
j dist(xj , x̂j), where

xj represents a descriptor, x̂j its reproduction vector and dist(.) be-
ing a nonnegative distortion measure. We want to use the average
square distance between a TAPS and a reproduction vector. For a
dataset with M TAPS’s, K reproduction vectors and assignments c
(with cm ∈ {1, 2, ...,K}, the assignment for TAPS m):∑

m

dist(Um, x̂cm) =
∑
m

EUm [‖Um − x̂cm‖
2] (2a)

=
∑
m

‖µm − x̂cm‖
2 +

∑
m,i

σ2
mi (2b)

where µm represents the mean descriptor from the m-th TAPS and
σ2
mi the variance of the i-th component of TAPS m. The term∑
m,i σ

2
mi is independent of both the codebook and the assignments.

Thus, a codebook trained using the K-means algorithm with the av-
erage of descriptors from the same visual element is equivalent to
using the expected square distances introduced in (1c). The assign-
ment of a TAPS to one of the codewords can also be done without
regard for the intra-TAPS variance term: it will be a constant factor
added to the expected square distance between a TAPS and each cen-
troid. Note that we only include a TAPS for codebook training once,
instead of once for each patch in the database. This makes K-means
training much faster, since there are usually one order of magnitude
fewer TAPS than descriptors. It also allows for redundancy removal
that may harm codebook training, and decreases quantization noise
by making the different appearances of each visual element be quan-
tized to a single codeword. This is related to the work of [17, 18].
Intra-TAPS variance. In practice, the intra-TAPS variance is small
compared to the distance from the query feature to the average de-
scriptor, not affecting matching results significantly (as seen in 4.2).
To measure its importance, we collected 4M patch pairs from query
images and database frames, and measured

∑
i σ

2
i /‖q − µ‖2. Us-

ing TCD with Npm = 50, the average ratio is 5.3%. In all cases, the
intra-TAPS variance term can be discarded, as shown in 4.2.

n<1& n&

(x$,$y)$=$(269$,$305)$

TAPS$number$($$$$$$$)$=$257$

Closest$keypoint$
$Difference$$$$$$$$$$=$$$0$

TAPS$number$($$$$$$$)$=$257$

(a)

0 200 400 600 800 1000
−16

−15

−14

−13

−12

−11

TAPS numbers

lo
g

2
(p

ro
b

a
b

ili
ty

)

TAPS−TCD−10

TAPS−TCD−50

TAPS−ID−10

TAPS−ID−50

(b)

Queries& Database&

(c)
Fig. 2: (a) Illustration of the predictive coding algorithm. For each keypoint in frame n, the algorithm finds the spatially closest keypoint in frame n − 1 and encodes the difference
in TAPS numbers. (b) Distribution for the 1,000 most frequent TAPS numbers, for different Npm and detection methods. (c) Example of pairs that are succesfully matched using
TAPS but not with frame-based descriptors.

3. REDUCING STORAGE REQUIREMENTS
The main components for storing our retrieval system (described in
4.3) are: retrieval structure and its index, features, and their loca-
tions. In a visual search application with a database of videos, the
storage cost can quickly become prohibitive. We use the method of
[13] to store an inverted index more efficiently. To store keypoints’
locations, we use a simple uniform quantizer with step size of 2,
followed by Arithmetic Coding [19]. In the rest of this section, we
discuss how to store descriptors with as small of a cost as possible.
The main advantage of our approach to reducing storage needs is the
fact that we can use a TAPS descriptor to represent multiple database
features. By representing a database feature by TAPS tm, we need to
store the TAPS number,m, that indicates which TAPS it corresponds
to. We are interested in reducing storage requirements by storing
TAPS descriptors and each frame’s TAPS numbers, instead of each
frame’s descriptors. In our dataset, TAPS numbers make for 32% of
total descriptor storage, if using 32-bit unsigned integers.
We propose a lossless compression scheme to encode these numbers
more efficiently, significantly reducing storage cost. First, note that
the distribution of TAPS numbers is far from uniform – Fig. 2(b).
This allows for more efficient encoding. We use an Arithmetic Coder
to efficiently encode a frame’s sequence of TAPS numbers.
In the pairwise matching step of our retrieval pipeline, we use de-
scriptors to rerank the results returned by the retrieval structure. In
our case, we use TAPS descriptors, instead of the original descrip-
tors. Thus, we need to efficiently access TAPS numbers in order to
know which TAPS descriptors to use. However, if we can afford
some delay, we can further reduce storage by the use of predictive
coding. We define an Encoding Sequence as a sequence of frames in
which all TAPS numbers from a given frame are predicted by TAPS
numbers from the previous frame – except for the first frame in the
sequence. The Encoding Sequence Size (ESS) is dependent on how
much delay one can afford before having access to TAPS numbers of
the required frame. The worst-case delay before starting to decode
TAPS numbers from the required frame is T × (ESS−1), where T
is the decoding delay per frame. There is a trade-off between storage
requirements and system delay. Note that ESS = 1 corresponds to
encoding TAPS numbers for each frame individually.
Predictive coding of TAPS numbers is done as follows. For each
keypoint in frame n, we find the spatially closest keypoint in frame
n−1. We then encode the sequence of differences in TAPS numbers
with an Arithmetic Coder. This process is illustrated in Fig. 2(a).

4. EXPERIMENTS
We introduce the CNN2h dataset1, composed of 2 hours of CNN
video. We provide annotated ground truth query results for 139
queries composed of photos taken with mobile phones and tablets

1It can be accessed at http://purl.stanford.edu/pj408hq3574

from displays showing the video (with substantial geometric and
photometric distortions), along with pictures of objects collected
from the web. We provide 2,951 true and 21,412 false ground-truth
matching pairs of query images and database frames, creating a pair-
wise matching experiment. The frames are sampled at 10fps – a
total of 72,000 frames. Fig. 1 presents sample queries and some
of their corresponding database frames. The new dataset is needed
since other datasets [5, 8, 6, 2] are either too small or use queries
that are only regions in a video frame (none of them being pictures
taken with cameras or clean images of products). Also, [2]’s queries
include an indication of its type (object, person or place).
Our experiments use SIFT [16] detector and descriptor, with a bud-
get of 400 features per frame, selected by highest Difference of
Gaussian peaks. Using TCD [7], only 7.3% of frames had keypoints
detected independently – all others used keypoint tracking. For com-
pression of TAPS numbers, we used ESS = {1, 10}.
4.1. Tracking and storage
Table 1 presents tracking and descriptor storage results and Fig.
2(b) presents the distribution of the most frequent TAPS numbers.
TAPS’s tend to capture more patches as Npm increases. The ra-
tio of number of TAPS’s to number of descriptors is smallest for
higher Npm’s and when using TCD. Significant storage savings
are obtained using TAPS, compared to storing all descriptors in the
database: using TCD, 93.44% with Npm = 50. Note the impor-
tance of compressing TAPS numbers: storage is reduced by up to
28.18% compared to storing 4 bytes per number. Decoding delays
can become significant with ESS = 10, but can be avoided if using
ESS = 1. Storage needs for different retrieval systems using a
Scalable Vocabulary Tree (SVT) [20] with 1M nodes are shown
in Table 2. Location coding saves 75% of storage for locations.
Inverted index compression obtains 95.37% gains for TAPS with
TCD using Npm = 50. Overall, we construct a system to index
72,000 frames using 412MB, compared to a baseline of 4,003MB
– savings of 89.7%. This is even more memory-efficient than using
descriptors extracted at 1fps with ID mode, as shown in Table 2,
with savings of 20.8%.
4.2. Pairwise Matching
In this experiment, we match a query image to a video frame us-
ing SIFT with ratio test [16] and RANSAC using an affine model.
The score is the number of inliers from the estimated model. We
draw an ROC curve comparing the different approaches. The impor-
tant operating points of this curve are between 10−2 and 10−3 False
Positive Rates (FPR) – typical operating points for applications. We
compare the different TAPS description modes, using TCD, in Fig.
3(a), forNpm = 50. First, note that the KO mode performs substan-
tially worse than all others. This is intuitive since it does not take
into account different appearances of the same keypoint. Second,
the intra-TAPS variance term does not affect much pairwise match-

10−4 10−3 10−2 10−1 1000.8

0.85

0.9

0.95

1

FPR

TP
R

Image−level ROC

TAPS−DA Npm=50, TCD
TAPS−MD Npm=50, TCD
TAPS−DA with intra−TAPS var. term, Npm=50, TCD
TAPS−KO Npm=50, TCD
TAPS−PA Npm=50, TCD

(a)

10
8

10
9

0.86

0.87

0.88

0.89

0.9

0.91

Pairwise matching system storage (Bytes)

T
P

R
 @

 0
.0

1
F

P
R

Descriptors TCD

Descriptors ID

TAPS−DA Npm=10, TCD

TAPS−DA Npm=10, TCD,
quant. locations

TAPS−DA Npm=50, TCD

TAPS−DA Npm=50, TCD,
quant. locations

TAPS−DA Npm=10, ID

TAPS−DA Npm=50, ID

(b)

10
8

10
9

0

0.2

0.4

0.6

0.8

Retrieval system storage (Bytes)

m
A

P

Descriptors TCD

Descriptors ID

Descriptors ID 1fps

TAPS−DA Npm=10 TCD

TAPS−DA Npm=10 TCD
compr. index, loc.

TAPS−DA Npm=50 TCD

TAPS−DA Npm=50 TCD
compr. index, loc.

TAPS−DA Npm=10 ID

TAPS−DA Npm=50 ID

(c)
Fig. 3: (a) Comparison of TAPS description modes, using Npm = 50 and TCD keypoints. The important operating points are between 10−3 and 10−2 FPRs. (b) Pairwise
matching results: TPR and storage requirements at FPR = 10−2. (c) Retrieval results for different systems compared by storage cost. For each configuration, we vary the SVT’s size.
Note that the two left-most curves use compressed inverted index and locations.

Npm
Detection

mode
Number of
descriptors

Number of
TAPS’s

Total storage - all
database descriptors

(MB)

Total storage - TAPS
with 32-bit TAPS

numbers (MB)

Total storage -
TAPS with ESS

= 1 (MB)

Total storage -
TAPS with ESS

= 10 (MB)

Worst case delay
for ESS = 10 (s)

10 TCD 27,299,281 1,834,880 3332.43 328.12 286.24 241.69 4.59
50 TCD 27,299,281 1,638,880 3332.43 304.20 260.50 218.48 4.77
10 ID 28,793,066 3,566,072 3514.78 545.15 502.11 466.55 9.45
50 ID 28,793,066 2,781,996 3514.78 449.44 403.79 371.32 7.20

Table 1: Tracking and descriptor storage results for different Npm’s and keypoint detection methods. Note the significant storage gain when using TAPS with compression of TAPS
numbers, compared to storing all descriptors – approximately one order of magnitude when using TCD. Decoding delays are measured on an Intel Xeon 2.4GHz processor.

Component
Descriptors
ID, baseline

(MB)

Descriptors ID,
compressed inv. index

and locations (MB)

Descriptors
TCD, baseline

(MB)

Descriptors TCD,
compressed inv. index

and locations (MB)

TAPS-DA TCD,
ESS = 10,

Npm = 50 (MB)

TAPS-DA TCD, ESS = 10,
Npm = 50, compressed inv.

index and location (MB)

Descriptors
ID, baseline,
1 fps (MB)

SVT 135.63 135.63 135.63 135.63 135.63 135.63 135.63
Inv. Index 133.11 24.23 126.22 15.24 123.66 5.73 10.30
Descriptors 3514.78 3514.78 3332.43 3332.43 218.48 218.48 351.48
Locations 219.67 53.94 208.28 51.74 208.28 51.74 21.97

Total 4003.19 3728.56 3802.56 3535.04 686.05 411.58 519.38

Table 2: Storage requirements for different retrieval systems using a Scalable Vocabulary Tree with 1M nodes. Our system indexes video at 10fps. It achieves savings of 89.7% with
respect to the baseline and is more memory-efficient than using descriptors at 1fps with ID mode (right-most column).

ing performance. Third, the MD mode performs comparably to the
DA mode – so we do not need to store all different visual element
appearances. Lastly, PA and DA perform on par. We choose to use
DA as it is well-justified for both pairwise matching and retrieval
experiments, presents best pairwise matching performance and can
be stored with much reduced requirements. We plot search quality
against storage requirements for the different detection modes and
Npm’s, with TAPS using DA description mode, in Fig. 3(b). For
this application, no retrieval structures are used, so we only need to
store descriptors (or TAPS descriptors and TAPS numbers) and loca-
tions. TAPS’s allow for 92.76% reduced storage at improved search
quality for TCD with Npm = 50 and quantized locations. Note that
TCD-based TAPS’s require lower storage than ID-based ones – as
TCD keypoints are more coherent. The reason why the use of TAPS
improves search quality is better temporal coverage due to more ro-
bust descriptors. Fig. 2(c) shows some pairs for which performance
is improved using TAPS – difficult matches, since they are near a
shot transition. Matching fails for frame-based descriptors, but the
(implicit) temporal constraint imposed by TAPS helps finding more
feature matches.

4.3. Retrieval
We employ a BoW retrieval method using an SVT, as in [20]. Two
methods are compared: 1) We train an SVT based on all descriptors
of the dataset (similar to [6, 8], but with larger and more scalable
codebooks), and 2) We train an SVT based on the TAPS descrip-
tors using DA mode. We evaluate retrieval performance for a range
of SVT sizes, fixing the SVT’s branch factor to 10, and varying the
number of levels from 2 to 6. When querying an image, we score
database frames using TF-IDF and output the top-ranked ones in a
short list that will go through a final pairwise matching stage. Philbin
et al. [21] showed that there can be significant loss in search quality
by quantizing descriptors – for that reason, our retrieval system uses
descriptors in a separate pairwise matching stage (using the proce-

dure described in 4.2). We rerank frames from the SVT’s short list by
the number of inliers after geometric verification. We limit the num-
ber of pairwise matching operations to 50, to avoid retrieval delays.
Frames that are close in time tend to be ranked close together in the
SVT’s short list. Pairwise matching frames that are too close in time
would be a waste of resources, since frames close in time are very
similar, and there is little value in providing results too close in time.
We do not perform pairwise matching for a given frame if another
frame, within 1 second, has already been pairwise matched. For per-
formance assessment, we use mean average precision (mAP). For
each query, we calculate the maximum possible number of matches
in the database by discounting the 1 second window, and calculate
AP based on the number of correct results in the 50 top-ranked po-
sitions after pairwise matching. Fig. 3(c) presents results for the re-
trieval experiment. Again, we observe improvements by using TAPS
due to better temporal coverage, by up to 12% (0.07 mAP). When
comparing based on storage costs, the advantage of using TAPS is
clear, with a reduction of up to 89.7%. Our system performs signif-
icantly better than if just using descriptors with ID mode at 1fps: it
presents 61.4% retrieval improvement (0.25 mAP) with 20.8% lower
storage cost.

5. CONCLUSION
This work considers video search using image queries. We use tem-
porally coherent keypoints to build better descriptors, in a mathemat-
ically justified manner, improving video search quality and reducing
storage needs. We show that descriptor averaging is among the best
description modes. A new compression algorithm reduces signifi-
cantly storage cost of indices that make for a large portion of total
storage needs. In a retrieval experiment, search quality improves by
up to 12% mAP while reducing storage cost by up to 89.7%. Lastly,
we show that temporally coherent keypoints are essential to achieve
best video search quality at the lowest possible storage cost.

6. REFERENCES

[1] D. Chen, N.-M. Cheung, S. Tsai, V. Chandrasekhar, G. Takacs,
R. Vedantham, R. Grzeszczuk, and B. Girod, “Dynamic selection of
a feature-rich query frame for mobile video retrieval,” in Proc. ICIP,
2010.

[2] P. Over, G. Awad, M. Michel, J. Fiscus, G. Sanders, W. Kraaij, A. F.
Smeaton, and G. Quenot, “ TRECVID 2013 – An Overview of the
Goals, Tasks, Data, Evaluation Mechanisms and Metrics,” in Proc.
TRECVID, 2013.

[3] C. Schulze and S. Palacio, “Retrieving Objects, People and Places from
a Video Collection: TRECVID’12 Instance Search Task,” in Proc.
TRECVID, 2012.

[4] A. Bursuc, T. Zaharia, O. Martinot, and F. Preteux, “ARTEMIS-
UBIMEDIA at TRECVid 2012 : Instance Search Task,” in Proc.
TRECVID, 2012.

[5] J. Sivic and A. Zisserman, “Video Google: a text retrieval approach to
object matching in videos,” in Proc. ICCV, 2003.

[6] J. Sivic, F. Schaffalitzky, and A. Zisserman, “Object Level Grouping
for Video Shots,” IJCV, vol. 67, no. 2, 2006.

[7] M. Makar, S. Tsai, V. Chandrasekhar, D. Chen, and B. Girod, “Inter-
frame Coding of Canonical Patches for Mobile Augmented Reality,” in
Proc. ISM, 2012.

[8] J. Sivic and A. Zisserman, “Video Google: Efficient visual search of
videos,” Toward Category-Level Object Recognition, vol. 4170, 2006.

[9] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W.-C. Chen,
T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and B. Girod, “Outdoors
augmented reality on mobile phone using loxel-based visual feature or-
ganization,” in Proc. MIR, 2008.

[10] R. Ji, J. C. L.-Y. Duan, H. Yao, Y. Rui, S.-F. Chang, and W. Gao, “To-
wards Low Bit Rate Mobile Visual Search with Multiple-Channel Cod-
ing Categories and Subject Descriptors,” in Proc. ACM Multimedia,
2011.

[11] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “LDAHash: Im-
proved Matching with Smaller Descriptors,” PAMI, vol. 34, no. 1, 2012.

[12] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, Y. Reznik,
R. Grzeszczuk, and B. Girod, “Compressed Histogram of Gradients: A
Low-Bitrate Descriptor,” IJCV, vol. 96, no. 3, 2012.

[13] D. Chen, S. Tsai, V. Chandrasekhar, G. Takacs, R. Vedantham,
R. Grzeszczuk, and B. Girod, “Inverted Index Compression for Scal-
able Image Matching,” in Proc. DCC, 2010.

[14] S. Tsai, D. Chen, G. Takacs, V. Chandrasekhar, J. Singh, and B. Girod,
“Location Coding for Mobile Image Retrieval,” in Information Systems
Journal, 2009.

[15] M. Makar, Interframe Compression of Visual Feature Descriptors for
Mobile Augmented Reality, Ph.D. thesis, Department of Electrical En-
gineering, Stanford University, 2013.

[16] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
IJCV, vol. 60, no. 2, Nov. 2004.

[17] F. Jurie and W. Triggs, “Creating Efficient Codebooks for Visual
Recognition,” in Proc. ICCV, 2005.

[18] R. Ji, H. Yao, X. Xie, and Q. Tian, “Vocabulary Hierarchy Optimization
and Transfer for Scalable Image Search,” IEEE Multimedia, vol. 18, no.
3, 2011.

[19] A. Moffat, R. Neal, and I. Witten, “Arithmetic coding revisited,” ACM
Trans. on Inf. Syst., vol. 16, no. 3, 1998.

[20] D. Nister and H. Stewenius, “Scalable Recognition with a Vocabulary
Tree,” in Proc. CVPR, 2006.

[21] J. Philbin, M. Isard, J. Sivic, and A. Zisserman, “Descriptor learning
for efficient retrieval,” in Proc. ECCV, 2010.

