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Abstract

For mobile augmented reality, an image captured by a mobile device’s camera is often
compared against a database hosted on a remote server to recognize objects in the image.
It is critically important that the amount of data transmitted over the network is as small as
possible to reduce the system latency. A low bitrate global signature for still images has been
previously shown to achieve high-accuracy image retrieval. In this paper, we develop new
methods for interframe coding of a continuous stream of global signatures that can reduce
the bitrate by nearly two orders of magnitude compared to independent coding of these
global signatures, while achieving the same or better image retrieval accuracy. The global
signatures are constructed in an embedded data structure that offers rate scalability. The
usage of these new coding methods and the embedded data structure allows the streaming
of high-quality global signatures at a bitrate that is less than 2 kbps. Furthermore, a
statistical analysis of the retrieval and coding performance is performed to understand the
tradeoff between bitrate and image retrieval accuracy and explain why interframe coding
of global signatures substantially outperforms independent coding.

1 Introduction

Mobile augmented reality (MAR) systems process a stream of viewfinder frames cap-
tured by a mobile device’s camera to recognize, track, and augment objects that
appear in these frames [1–4]. Many of these systems compare the acquired frames
to a database of labeled images to perform object recognition. For robust image
description, local image features such as SIFT [5], SURF [6], CHoG [7], or RIFF [4]
are extracted and can be reliably matched between images of the same objects, even
when there are severe photometric and geometric variations.

To provide fast comparisons against a large database, a global signature can be
constructed to summarize the most important statistics of the local features. Many
popular global signatures can be categorized into two groups: feature histograms and
feature residuals. Histogram-based methods [8, 9] generally use a large codebook of
visual words to form a histogram that records how often each visual word is visited by
an image’s local features. In contrast, residual-based methods [10,11] use a relatively
small codebook of visual words to form a hash from the quantization errors and attain
comparable retrieval performance as histogram-based methods.

If the database is hosted on a remote server, then the query signatures extracted
from the frames on the mobile device need to be transmitted over a network. It is crit-
ically important that the amount of data sent over the network is as small as possible
to minimize system latency. One emerging MPEG standard, Compact Descriptors
for Visual Search (CDVS) [12], aims to design a low bitrate signature for general
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Figure 1: System for extracting a Residual Enhanced Visual Vector (REVV) signatures
from a still image on a mobile device and matching against a database on a server.

image matching applications. The CDVS participants have shown that transmitting
a combination of residual-based global signatures and local features attains the best
image matching performance for a range of different image categories [13, 14] .

The problem of compressing local features for a motion video has only recently
received attention. A temporally coherent keypoint detector and interframe feature
coding techniques are presented in [15,16], which enables a continuous stream of local
features to be sent from the mobile device to the server at a low bitrate. Since the
features are sent for each frame, the recognition system can instantly adapt to sudden
changes in the scene for ultra low-latency MAR applications.

The methods in [15,16] focused only on interframe coding of local features. In this
paper, we develop efficient methods for interframe coding of residual-based global sig-
natures. We design an embedded data structure that offers rate scalability and direct
comparison of signatures encoded at different bitrates. Compared to independent
coding of global signatures extracted from video frames, we can effectively reduce the
bitrate of sending a continuous stream of global signatures to less than 2 kbps, with
up to 88× bitrate reduction, while achieving the same or better image retrieval accu-
racy. A statistical analysis of the global signatures is performed to help understand
how retrieval accuracy varies with bitrate and to help optimize the system design.

In Sec. 2, we review briefly the major processing stages and system structure for
generation of a compact global signature. Then, in Sec. 3, we develop a new framework
and new methods for interframe coding of a continuous stream of global signatures.
In Sec. 4, we build a statistical model for residual-based global signatures and analyze
the performance of independent and interframe coding methods. Experimental results
on a large dataset of videos in Sec. 5 show our interframe coding methods yield
substantial bitrate savings compared to independent coding of global signatures.

2 Compact Global Signatures for Image Retrieval

The image retrieval system that uses compact Residual Enhanced Visual Vector
(REVV) signatures to achieve high recognition accuracy [11] is shown in Fig. 1. First,
on the mobile device, scale- and rotation-invariant local features are extracted from
a captured image. A power law is then applied to the feature descriptors to reduce
the influence of peaky components. The dimensionality of the descriptors is subse-
quently reduced using Principal Component Analysis (PCA). Then, the descriptors
are quantized using a small codebook, typically containing 64 - 256 codewords. The
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Figure 2: System for extracting interframe coded REVV signatures from video frames on
a mobile device and matching against a database on a server. The block “Extract REVV
Signature” outputs a binary REVV signature using the methods depicted in Fig. 1.

quantization residual vectors are aggregated for each codeword, and each aggregated
residual vector is normalized to have unit magnitude. After a rotation by Linear Dis-
criminant Analysis (LDA) to optimally separate matching and non-matching residual
vectors, each residual component is binarized depending on its sign. The binarized
signature is transmitted from the mobile device to a remote server, where a database
of REVV signatures is stored. Weighted correlations between the query signature and
the database signatures are efficiently computed using bitwise XOR and POPCNT
instructions and lookup tables. Finally, the scores are normalized to take into ac-
count that some database images visit more codewords than other database images.
Recognition results derived from the ranked list of database images are sent back to
the mobile device for augmentation.

The system in Fig. 1 is designed for compressing global signatures extracted from
still images. If global signatures are extracted from consecutive frames of a motion
video, the temporal correlation between the signatures should be carefully exploited
to achieve much higher bitrate savings. In the next section, we develop several efficient
methods for interframe coding of a continuous stream of REVV signatures.

3 Interframe Compression of Global Signatures

3.1 Temporally Coherent Keypoint Detection

To exploit the correlation between neighboring REVV signatures, we use a temporally
coherent keypoint detector (TCKD) [15,16] which divides frames into two categories:
Detection Frames (D-Frames) and Forward Propagation Frames (FP-Frames). For
each D-Frame, TCKD detects SIFT keypoints [5]. Then, each SIFT keypoint is
propagated into the subsequent FP-Frame by searching across a set of similarity
transforms to minimize the sum of absolute differences (SAD) in the canonical patch
for the keypoint. This propagation continues until the next D-Frame appears. In
the interframe coding framework depicted in Fig. 2, a D-Frame appears once every
5 frames as an example, but in practice a D-Frame is usually inserted once every 30
frames, or once every second assuming a frame rate of 30 frames/second.



3.2 Predictive Coding of Global Signatures

To construct temporally coherent global signatures, SIFT descriptors [5] are extracted
from the TCKD keypoints, and then REVV signatures are generated from these SIFT
descriptors. Each D-Frame’s REVV signature is independently coded. In contrast,
each FP-Frame’s REVV signature is predictively coded using the previously transmit-
ted REVV signature as reference. We design and implement three different predictive
coding methods to adapt to various types of scene content and achieve the best coding
efficiency for the current video stream.

3.2.1 Selective Codeword Propagation (SCP)

For a codebook of k visual words, let the original REVV signature of the ith frame
be denoted as Ri = {(Ui,1, Ri,1) , · · · , (Ui,k, Ri,k)}. Here, Ui,j ∈ {0, 1} is a binary
variable indicating if the jth codeword is visited by the ith frame and Ri,j is the
corresponding binary residual vector if the codeword is visited. Similarly, let the
predictively coded REVV signature, which is sent to the server, be denoted as Si =
{(Vi,1, Si,1) , · · · , (Vi,k, Si,k)}. The SCP method assigns Vi,j = Ui,j AND Vi−1,j for
1 ≤ j ≤ k. If Vi,j = 1, then the SCP method further assigns Si,j = Si−1,j, which
propagates the previously sent binary residual vector for the jth codeword. We do
not encode the difference between the residual vectors Ri,j and Si−1,j, because these
small differences are due to small temporal fluctuations in the feature descriptors and
do not noticeably affect image retrieval results. Note that only Vi,j needs to be sent,
because Si,j = Si−1,j has been previously received at the server. Additionally, Vi,j
needs to be sent only if Vi−1,j = 1, because Vi,j = 0 when Vi−1,j = 0.

3.2.2 Selective Frame Propagation (SFP)

When the scene content changes gradually, two consecutive frames visit mostly the
same codewords and have similar residual vectors at these codewords. Taking the
idea behind SCP one step further, SFP propagates all of the residual vectors between
two frames if these two frames’ REVV signatures have a high degree of similarity. As
before, let Ri = {(Ui,1, Ri,1) , · · · , (Ui,k, Ri,k)} denote the original REVV signature and
Si = {(Vi,1, Si,1) , · · · , (Vi,k, Si,k)} denote the predictively coded REVV signature for
the ith frame. We define the interframe codeword similarity rate between the ith and

(i−1)st frames as rk(i, i−1) =
(∑k

j=1 AND (Ui,j, Vi−1,j)
)
/
(∑k

j=1 Ui,j

)
. If rk(i, i−1)

exceeds a high threshold trk , then SFP assigns Vi,j = Vi−1,j and Si,j = Si−1,j for
1 ≤ j ≤ k, and only a single bit is sent to indicate that the previous frame’s residual
vectors should be entirely propagated. Otherwise, SFP uses SCP, and only a single
bit is sent to the server to indicate a temporary switch to the SCP mode, followed by
the bits generated by SCP.

3.2.3 Selective Frame Propagation + Local Search (SFP + LS)

Since REVV signatures are compact, they can be easily stored in a database on
a mobile device with a small memory capacity. The SFP + LS scheme exploits
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Figure 3: Three separate embedding levels for the REVV signature, where residual vectors
are progressively discarded as the bitrate is reduced.

this valuable property of REVV to incrementally update a local database. When
the server replies with the recognition results for a query, the server also sends the
REVV signature and a small set of compressed features for the top-ranked database
image, if this data has not been previously sent back to the mobile device. The
mobile device updates its local database with the received REVV signature. On
a subsequent query, the local REVV database is first searched and top candidates
within a shortlist are then verified for geometric consistency with the Random Sample
Consensus (RANSAC) algorithm. If a local database candidate attains a high number
of RANSAC inliers, then the search terminates locally on the mobile device and the
best local database candidate is retrieved; otherwise, a REVV signature is sent by
SFP encoding to expand the query on the server. By using a compact local database,
SFP + LS effectively reduces the amount of query data sent through the uplink by
occasionally sending feedback data through the downlink, which is well suited to most
wireless networks where uplink speeds are much lower than downlink speeds.

3.3 Embedded Global Signatures for Rate Scalability

To enable rate scalability, we develop an embedded data structure for the REVV sig-
nature. Fig. 3 shows three separate embedding levels of the same REVV signature,
corresponding to three different target bitrates. The embedding at Level 1 corre-
sponds to the highest-quality signature and requires the largest bitrate. At Level 2,
the residual vector for every other codeword is discarded to reduce the bitrate by
approximately 2×. Similarly, at Level 3, only the residual vector for every 4th code-
word is retained to reduce the bitrate by approximately 4×. The advantages of this
rate adjustment scheme are that (1) signatures generated at 2 different levels can be
directly compared to each other, (2) a lower bitrate embedding can be derived from
a higher bitrate embedding, and (3) the server only needs to restore the embedding
at Level 1. This rate scalability provided by the embedded data structure allows for
a convenient dynamic selection of the proper bitrate in response to various changing
system conditions, such as network transmission quality and scene contents.

4 Analysis of Retrieval and Coding Performance

4.1 Modeling Image Retrieval Accuracy

First, we analyze the correlations between binary residual vectors. The correlation
Cnm for a non-matching image pair and correlation Cm for a matching image pair
are computed as Cq =

∑Nvisit, q

j=1 Cq,j for q ∈ {nm,m} = {non-matching,matching}



where Nvisit,q is the number of codewords visited in common by the pair of images
and Cq,j is the correlation at a particular codeword. Equivalently, if we know the
Hamming distance Hq,j between two binary residual vectors at a codeword, we can
compute the codeword-level correlation as Cq,j = dPCA − 2Hq,j, where dPCA is the
descriptor dimensionality after PCA. The image-level correlation can be rewritten as
Cq = Nvisit,q dPCA − 2Hq, where Hq =

∑Nvisit,q

j=1 Hq,j.

The number of codewords available is Nk,l = bk/2l−1c, where l = 1, 2, 3 indicates
the embedding level described in Sec. 3.3. We model Nvisit,q ∼ Binomial (Nk,l, pq) for
q ∈ {nm,m}. The parameters pnm and pm are the probabilities that a codeword is
visited by both images for the non-matching and matching cases, respectively.

If Nvisit,nm = n, then n dPCA bits are compared between two non-matching images.
Let Hnm denote the sum of the n dPCA bits. For a non-matching image pair, the bits
are independent, so Hnm can be modeled conditionally as a binomial random variable:
Hnm| {Nvisit,nm = n} ∼ Binomial (n dPCA, θnm). Here, θnm ≈ 0.5 is the probability
that two non-matching images differ in any single bit of the binary residual vector.

Similarly, if Nvisit,m = n, then n dPCA bits are compared between two matching
images. Let Hm denote the sum of the n dPCA bits. For matching images, the bits are
strongly dependent, so we employ a Generalized Binomial Distribution (GDB) [17] to
capture this dependence. For a GBD, the probabilities of success SN and failure FN

on the N th Bernoulli trial depend on the number of successes h − 1 in the previous
N − 1 trials:

p (SN |h− 1, N − 1) = (1− αm)θm + αm (h− 1) / (N − 1) (1)

p (FN |h,N − 1) = (1− αm)(1− θm) + αm (1− h/ (N − 1)) (2)

where θm is the probability of success on the first trial in the sequence and αm ∈ [0, 1]
is a parameter controlling the amount of dependence between the separate trials. The
probability of h successes in N trials is then defined recursively for h = 0, · · · , N :

pGBD(h|N) = p(SN |h− 1, N − 1) pGBD(h− 1|N − 1) +

p(Fn|h,N − 1) pGBD(h|N − 1). (3)

The conditional distribution for Hm is then pHm|Nvisit,m
(h|n) = pGBD(h |n dPCA).

Since Cq = n dPCA − 2Hq when Nvisit,q = n, the conditional distribution for Cq

is pCq |Nvisit, q
(c|n) = pHq |Nvisit,q

(0.5 (n dPCA − c) |n). Then, the distribution for Cq is

pCq(c) =
∑Nk,l

n=0 pNvisit, q
(n) pCq |Nvisit, q

(c|n).
In Fig. 4, we plot the distributions for Cnm and Cm for the three different em-

bedding levels. The empirical distributions are extracted from video frames in the
Stanford Streaming MAR Dataset [16], which will be described in greater detail in
Sec. 5. Each non-matching distribution is centered around a zero correlation score
and is precisely described by a mixture of binomials. In contrast, each matching
distribution has a long tail skewed toward high correlation scores, caused by the de-
pendence between the different bits, and requires a mixture of GBDs for accurate
modeling. From Fig. 4, we also see that as we move from Level 3 to Level 2 to Level
1 and thus increase the bitrate, the area of overlap between the non-matching and
matching distributions decreases and image retrieval accuracy increases.
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Figure 4: Distributions of correlations between binary residual vectors for matching and
non-matching image pairs.

In querying a large database of images with REVV signatures, a ranked list of

correlation scores is generated. In this list, Ndb,m correlation scores C
(1)
m , · · · , C(Ndb,m)

m

and Ndb,nm correlation scores C
(1)
nm, · · · , C(Ndb,nm)

nm belong to the matching and non-
matching database images, respectively. Generally, Ndb,m � Ndb,nm. We assume the

scores C
(1)
m , · · · , C(Ndb,m)

m and C
(1)
nm, · · · , C(Ndb,nm)

nm are distributed i.i.d. according to the
matching and non-matching correlation models derived previously.

Mean precision at rank 1 (PA1) and mean average precision (MAP) are com-
monly used measures of retrieval accuracy. As we show in Sec. 5, the PA1 and
MAP values are close to each other, so we focus on predicting the PA1 value. Let

Cmax
m = max

{
C

(1)
m , · · · , C(Ndb,m)

m

}
and Cmax

nm = max
{
C

(1)
nm, · · · , C(Ndb,nm)

nm

}
. Then,

PA1 = P (Cmax
m ≥ Cmax

nm ). The cumulative distribution function (CDF) for Cmax
m is

FCmax
m

(c) = P (Cmax
m ≤ c) = P (Cm ≤ c)Ndb,m = FCm(c)Ndb,m (4)

using the assumption that C
(1)
m , · · · , C(Ndb,m)

m are i.i.d. random variables. Similarly,
the CDF for Cmax

nm is FCmax
nm

(c) = FCnm(c)Ndb,nm . We can compute the probability mass
functions (PMFs) pCmax

m
(c) and pCmax

nm
(c) by taking discrete differences of FCmax

m
(c) and

FCmax
nm

(c), respectively. Then, we have

PA1rem = P (Cmax
m ≥ Cmax

nm ) =
∑
c

pCmax
m

(c)P (c ≥ Cmax
nm ) =

∑
c

pCmax
m

(c)FCmax
nm

(c). (5)

Eq. 5 predicts the PA1 values for the independent, SCP, and SFP coding methods
which all search a database on a remote server.

To predict the PA1 value for the SFP + LS method, we define PLS as the proba-
bility that the local database search succeeds for a query. If the local database search
is insufficient, a REVV signature is transmitted to the server and the remote query
will succeed with probability given in Eq. 5. Hence, the overall probability of success
for the SFP + LS method is given by PA1loc = PLS + (1− PLS) PA1rem. In Sec. 5,
we will observe that PA1 values predicted by our model match well with PA1 values
obtained from actual retrieval experiments.

4.2 Modeling Uplink Coding Bitrate

Now, we model the uplink bitrate for the different coding methods. The uplink
bitrate for independent coding of REVV signatures is predicted to be RIndep =



NFramesNk,l (1 + ρvisit dPCA) bits/second, where as before Nk,l is the number of code-
words available for the lth embedding level and dPCA is the descriptor dimensionality
after PCA. Additionally, ρvisit ∈ [0, 1] is the average fraction of codewords visited by
an image’s feature descriptors and NFrames is the number of frames per second.

The uplink bitrate for predictive coding with SCP is predicted to be

RSCP = ND-FramesNk,l (1 + ρvisit dPCA)︸ ︷︷ ︸
bitrate for D-Frames

+NFP-FramesNk,l ρvisit︸ ︷︷ ︸
bitrate for FP-Frames

. (6)

Here, ND-Frames and NFP-Frames are the number of D-Frames and FP-Frames, respec-
tively, per second. Note that NFrames = ND-Frames + NFP-Frames. Similarly, the uplink
bitrate for SFP is predicted to be

RSFP = ND-FramesNk,l (1 + ρvisit dPCA)︸ ︷︷ ︸
bitrate for D-Frames

+NFP-Frames (1 + P (rk < trk) Nk,l ρvisit)︸ ︷︷ ︸
bitrate for FP-Frames

, (7)

where rk is the interframe codeword similarity rate and trk is the threshold deciding
when to switch between the SFP and SCP methods, defined in Sec. 3.2.2. Finally, the
uplink bitrate for SFP + LS is predicted to be RSFP+LS = (1− PLS)RSFP, where as
in the last section PLS is the probability that the local database search succeeds. As
we show in the next section, RSCP, RSFP, and RSFP+LS are much smaller than RIndep

when the number of D-Frames per second is small, e.g., ND-Frames = 1.

5 Experimental Results

We evaluate the performance of the independent coding and predictive coding meth-
ods on the Stanford Streaming MAR Dataset [16]. This dataset contains 32 VGA-
resolution query videos recorded with a camera-phone showing books, DVDs, CDs,
and other product packages. Sometimes, several different objects appear in the same
video sequence. Each query frame is matched against a database of 1M images to
evaluate retrieval accuracy. For every query D-Frame, we extract 250 SIFT features
using a feature selector optimized for matching accuracy [18]. For REVV, we use a
codebook of k = 190 codewords trained on an independent dataset and dPCA = 32
PCA eigenvectors. For interframe coding, we use 1 D-Frame for every 30 frames and
an interframe codeword similarity threshold of trk = 0.9.

Fig. 5 plots the mean precision at rank 1 (PA1) and the mean average precision
(MAP) versus the uplink bitrate for independent coding, SCP, SFP, and SFP + LS.
The uplink bitrate is varied by changing the embedding level. Both SCP and SFP
attain similar PA1 and MAP values as independent coding, but they substantially
reduce the uplink bitrate by 14× and 24×, respectively. The best performing method
is SFP + LS, which reduces the uplink bitrate by 88× to less than 2 kbps and attains
higher PA1 and MAP values because the geometric verification for the local database
search improves retrieval accuracy. SFP + LS uses a small downlink bitrate of 14
kbps to update the local on-device database.

In SFP + LS, the best interframe coding method is automatically chosen depend-
ing on the current video contents. When local search suffices, nothing is transmitted
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Figure 5: Image retrieval accuracy measured on the Stanford Streaming MAR Dataset.
Solid and dashed lines correspond to empirical and model data, respectively.

to the server. Otherwise, if rk > trk , the SFP method is used to propagate residu-
als. Finally, if local search is insufficient and rk ≤ trk , the SCP method activates to
accommodate more rapid changes in the scene contents.

The solid lines in Fig. 5 represent empirical data, while the dashed lines represent
model data. Our analysis from Sec. 4 accurately predicts how retrieval precision varies
with the uplink bitrate for each method. As we move to a higher-quality embedding
level, the matching and non-matching score distributions have smaller area of overlap,
leading to higher retrieval precision but also a larger bitrate. The analysis captures
the relative advantages between independent coding, SCP, SFP, and SFP + LS.

6 Conclusions

In this paper, we have developed three new methods for interframe coding of global
signatures extracted from a continuous sequence of frames acquired on a mobile de-
vice. The usage of these new methods enables sending a low bitrate stream of global
signatures from a mobile device to a server, which is important for accurate large-
scale image retrieval in mobile augmented reality applications. By exploiting the
correlation between global signatures of neighboring frames through selective prop-
agation of codeword residuals, we can substantially reduce the uplink bitrate by as
much as 88× compared to independent coding of global signatures while achieving
the same or better image retrieval accuracy. Less than 2 kbps is required to con-
tinuously stream high-quality global signatures from the mobile device to a server,
which is practical for even slow wireless links. The global signatures are encoded in
an embedded data structure that offers rate scalability. We have also performed a
detailed statistical analysis of the global signature’s retrieval and coding performance.
The analysis reveals how adjusting the rate in the embedded data structure changes
the area of overlap between matching and non-matching score distributions and con-
sequently affects the image retrieval accuracy. Intuitive expressions for the bitrates
of independent and interframe coding methods are derived to explain why interframe
coding obtains substantial bitrate savings compared to independent coding.
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