TAG-SENSITIVE FEATURES FOR LARGE-SCALE SCENE CLASSIFICATION

Andpre Filgueiras de Araujo

afaraujo@stanford.edu

ABSTRACT

Scene classification is a fundamental research problem
in computer vision. However, performances of state-of-the-
art systems are still far from acceptable. This motivates the
search for improved descriptors and features to represent the
scene. Multimodal learning approaches provide a way of
building meaningful dictionaries that can take into account
not only the visual structure, but also the tags associated to
example scenes. In this work, we experiment with a ‘Y-
shaped network’, and get encouraging preliminary results,
comparable to very complex hand-crafted descriptors. Future
work will explore promising new architectures, taking into
account the full content of images.

1. INTRODUCTION

Unsupervised feature learning has been successfully applied
to a variety of tasks in computer vision, audio, natural lan-
guage processing, among others. In most cases, it outper-
forms hand-designed methods. Scene categorization is a
fundamental research problem in computer vision. However,
most work have been restricted to problems involving at most
tens of classes.

Recently, the Scene Understanding (SUN) dataset [1]] was
released, comprising 899 classes and more than 130 thousand
images. Modern methods, combining several carefully hand-
designed complex features, achieve 38% classification accu-
racy with this dataset - which can be regarded as a satisfactory
result given the difficulty of the problem. Some examples of
scenes drawn from this dataset are given in Figure|[T]

Concretely, the current state-of-the-art approach employs
12 different descriptors (GIST, HOG2x2, Dense SIFT, LBP,
Sparse SIFT, SSIM, Tiny Images, Line Features, Texton His-
tograms, Color Histograms, Geometric Probability Map and
Geometry Specific Histograms) by combining their SVM ker-
nels in a weighted sum to obtain the final classification score.
The construction of the descriptors involves, in most cases,
dense extraction of patches, followed by a histogram assign-
ment.

The main objective of this work is to design meaning-
ful representations for scene classification in an unsupervised
fashion. In such a highly complex scenario, the ability of a
human to design efficient features can be hindered, making a
case for the use of features that are learned automatically. We

Urban

alleyway

Nature

hatchway

sunken garden

e

Fig. 1. Examples of scenes in the SUN dataset.

employ multimodal learning, with the objective of obtaining
representations that take tags into consideration.

We considered the outcome of the work to be encourag-
ing, given the very preliminary results that are presented here,
and plan to continue on working on this problem by exploring
novel machine learning architectures, as will be mentioned
later.

This report is organized as follows. Section [2]introduces
the utilized feature learning algorithms. Next, in Section 3]
the classification scheme is presented. Experimental setup
and results follow in SectionEl Finally, we conclude in Sec-
tion[3}

2. FEATURE LEARNING

In this Section, we present the feature learning method that
was employed to discover structure in images.

In this work, we employ one of the variations of Multi-
modal Learning, as introduced in [2]], namely the “Y-shaped”
configuration, in which one modality (in our case, image
patches) is used to learn a shared representation, capable of
efficiently describing two other modalities (in our case, im-
age patches and tags). This architecture can be regarded as a
generalization of a simple autoencoder, as will be seen below.

The architecture of this learning algorithm is shown in
Figure[2] It consists of a fully-connected neural network with



Patch reconstruction

> GT

Tags Tags

reconstruction

CECIRCE)

(1 - tagWeight)

@0 -

tagWeight

—(00 - 00

16x16 patches ,j

Fig. 2. Architecture of the Y-shaped network.
stands for ‘Ground-truth tags’.

‘GT Tags’

one input layer (in which one modality is input), one hidden
layer (which will learn a shared representation) and two par-
allel decoding layers (one for each modality). The balance
between each modality’s importance can be regulated by a
weight (tagWeight, as shown in Figure 2).

In our case, the objective is to use randomly sampled
16x16 colored patches to learn efficient representations for
the patches themselves and for the tags. To operate on image
patches, it is important to, first, remove their means, in order
for the data to be normalized. Also, it is common to apply
PCA-Whitening in order to a) reduce the dimension of the
data to the most important components, and to b) normalize
the variance of each component to one. No pre-processing
is performed on the tags, which are simply represented by a
binary vector indicating the presence/absence of each tag.

Each node in the hidden layer (HL) performs a non-linear
operation; specifically, the activation of the nodes in the hid-
den layer is given by:

a = f(WHx+bH) (D)

where a is the activation of the hidden layer, f(.) the sigmoid
function, Wy and by the parameters and z the input vector
(the vectorized 16x16 colored patches) to the layer.

For the output layer, we employ linear operations for the
image patches and non-linear operations for the tags. The
activation of the output layer is, then, given by:

yi = Wia + b; ()

ye = f(Wia + by) 3)

with @ and f(.) as above, y;, W; and b; the output and the
parameters of the image patch output layer, respectively, and,
similarly, y;, W} and b, for the tags output layer.

Each decoding branch is optimized independently, while
the hidden layer takes into account both modalities to con-
struct its weights. An optimization problem can then be for-
mulated, targeting the minimization of the reconstruction er-
ror (Jre.). As is common practice in the field, we add to this
optimization problem a regularization term for each nodes’
weights, .J,,, (to avoid overfitting) and a sparsity constraint
on the hidden layers, J; (to discover interesting structure).
Mathematically, our overall cost function, J, is, then:

J=Jt ng 'y @)

For the reconstruction error, we adopt a squared loss func-
tion for the image patches (J,...—;) and a cross-entropy func-
tion for the tags (Jrec—t):

Jrec - (]- - TW)Jrecfi + (TW)Jrecft (5)
i = 2w a0 ©
rec—i = o £ D) Yi i

k=
(1 —t(k. 7)) log(1 — e (k, 7))] @

where m is the number of training examples, V' is the vo-
cabulary size, TW is the trade-off parameter tagWeight (0 <
TW < 1), y;(k) and y;(k, j) are the image patch and tag out-
puts for the training example % (and tag 7), ¢;(k) and ¢ (k, j)
are the ground truth outputs for the training example % (and
tag j).

The weight decay and sparsity terms are as usual, and due
to the limited space, we don’t rewrite their expressions here.

This specifies the cost function completely. To employ an
optimization algorithm and minimize J in function of Wy,
bgr, Wi, by, Wy, b, we need to calculate the gradient of J in
terms of each of those parameters.

For that, we employ backpropagation. Again, for limita-
tion of space, we won’t rewrite all the equations for the cal-
culation of the gradient. We note, however, that these cor-
respond simply to a superposition of what is commonly em-
ployed for an usual autoencoder for each of the branches (the
tag branch backpropagating from a sigmoid output, and the
image patch branch backpropagating from a linear output),
weighted accordingly with T'W, for the tag branch, or with
1 — T'W, for the image patch branch.

It is important to note that the case where TW = 0 is
identical to a common autoencoder setting.



Feature Spatial
extraction Pyramid SVM
(convolution) pooling
Testing set 1 i
oo - o0 g 03
{ ] Construction Living 035
Training set of dictionary room

(k-means)

Spatial .
y Construction
Pyramid
‘ pooling of SVM

Fig. 3. Scheme utilized to predict the scene class.

Feature
extraction
(convolution)

3. CLASSIFICATION SCHEME

In this Section, we present the scheme that is employed to
perform classification, shown in Figure

Initially, using the hidden layer weights that were discov-
ered by the methods introduced in Section 2] the features cor-
responding to each position in each image in the training set
are extracted (in other words, we multiply each patch by Wy,
as is done in Equation([T). This generates a ‘response map’ for
each hidden layer node, for each image.

Then, with all these responses, a codebook is built using
k-means, to enable capturing the diverse types of outputs. In
the next step, the response maps are pooled using a spatial
pyramid, constructing a histogram for each section, at each
pyramid level. As is common practice, these histogram-like
vectors are concatenated to form the final feature vector for
the image. An SVM is then trained based on these final fea-
ture vectors.

For the testing images, similarly, the response maps are
constructed and pooled using the dictionary generated in
training stage. The resulting histogram-like feature vectors
are input to the previously constructed SVM, to generate
scores for each class (in Figure [3] these are illustrated by
scores ‘0.2” and ‘0.35” to the classes ‘Beach’ and ‘Living
Room’).

4. EXPERIMENTS AND RESULTS

In this Section, the experimental setup and obtained results
are given. We start with feature learning results, then present
results for classification on the SUN dataset.

4.1. Multimodal Learning

We used more than 300,000 images crawled from Flickr.
These images comprise all sorts of variations which are in-
herent in images, such that we believe the learned features
will be representative enough to be used in scene classifica-
tion problems. Also, as they present tags associated to each
image, they allow for the learning of patches sensitive to
textual data.

16x16 patches were extracted at random positions in ran-
domly selected images, making up a total of 300,003 patches,
which were saved together with their tags, and used as in-
puts to the scheme presented in Section 2} For each patch, we
made sure there were at least two tags associated to the image
it was in. A vocabulary of 2000 tags was used, corresponding
to the most frequent words present in the dataset.

In order to make our results directly comparable to the
best method presented in [1]] (namely, HOG 2x2), we decide
to employ 124 hidden layers (in HOG 2x2, 124 features are
extracted from 16x16 patches) per color and patch size of
16x16x3 (in other words, to be clear: input layer and patch
output layer of size 768 and hidden layer of size 372). As the
optimization algorithm, we employ L-BFGS.

Results are shown in Figure ] which gives the learned
weights Wy for each value of tagWeight, T'W, as introduced
in Section As previously mentioned, the case in which
TW = 0 reduces to an usual autoencoder scenario.

We observe that many edge-like structures are captured,
bearing strong resemblance to usual Gabor filters. Also, it is
interesting to notice that the majority of bases do not present
color, despite being trained with color inputs.

The case in which T'W = 1 does not learn a useful basis.
This can be seen by the fact that the standard deviation for
each of the bases is very low - this indicates the algorithm
could not optimize the weights, due to very large error.

It is important to say that this result agrees with what was
expected: since the patches are not very informative of the
tags (e.g., the patches are usually similar for very different
scene classes), the result for TW = 0.25,0.5,0.75 does not
change much from T'W = 0. This can be understood since
the error in the tag branch is extremely high, due to the inef-
ficacy of predicting tags based on single patches.

As previously mentioned, this configuration represents an
intermediate level between an usual autoencoder and other
neural network-based unsupervised learning architectures,
which represents the final goal of this work, to be continued
as a research project.

4.2. Scene Classification

All experiments are performed with respect to the exact same
training and testing partitions as used in [[1], so that all results
are directly comparable.

Our codebook was constructed using k-means with 300
centroids, and the spatial pooling is performed in 3 levels (re-
sulting in 1 + 4 + 16 = 21 partitions), as is common practice.
The SVM is implemented using libSVM [3]] with a histogram
intersection kernel.

Initially, we compare the results for classification on SUN
Dataset for all the different configurations of tagWeight, us-
ing 5 training examples per class. This serves to understand
which one is more useful to the task and, as the dataset is very
large, this experiment can give results in a reasonable amount



B | 4 ME [
FENEOLEEIEPrEaliEEEA
tagWeight = 0.75

tagWeight = 0.5

tagWeight = 0.25

R
L e
s '='§§ :
SoHaShELsRANEESEECE
I.!II--E-I-“-H..I
tagWeight =

Fig. 4. Dictionary of learned weight parameters Wy for the hidden layer, for each tagWeight (= T'W) configuration. The
bases are sorted in ascending order of standard deviation. The bases for the configuration tagWeight = 1 are almost constant,
indicating no effective learning - however, as the visualization is normalized to the full range of the input, the bases have this

noisy appearance

of time. We also note that, in [1]], no crossing of the learning
curves of the different methods is observed - which indicates
that it is very likely that the method which performs better for
5 training examples will perform better with more training
data.

The results for this first classification experiment are given
in Table[Il We observe that the features learned with the au-
toencoder present higher results in terms of classification ac-
curacy. This agrees with the results from Subsection[d.T} the
tags do not help the learning of meaningful representations of
the data, since the patches cannot be good examples of the
observed tags.

Next, we run the full experiment to obtain the learning
curve and compare the results with what is currently state-of-
the-art for this dataset. Based on the results from the previous
experiment, we use only the weights from the configuration

Method Accuracy (%)
tagWeight = 0 (AE) 4.7105
tagWeight = 0.25 4.2445
tagWeight = 0.50 4.0439
tagWeight = 0.75 4.1293

Table 1. Classification results for the different learned fea-
tures on SUN dataset using 5 training examples per class.

TW = 0 (i.e., the autoencoder configuration). Due to the
very high processing time required for the full experiment to
run, we were not able to perform parameter tuning, and the
presented results are still quite preliminary.

The learning curve is given in Figure [5| together with re-
sults for other methods, as in [I]]. Our method obtains results



30
se. “=HOG2x2
~ 25
g =B-Geometry texton
3 20 histograms
(%)
E 15 #=Dense SIFT
=]
£
3810 ==GIST
=
‘a
& 5
o =#=AE (ours)

0

0 20 40 60 =®=Sparse SIFT

Number of training examples histograms

Fig. 5. Learning curve for our method, together with previ-
ously reported results.

which are still not comparable to state-of-the-art. However, it
is encouraging to observe that it can perform comparably to
highly non-linear and manually designed approaches such as
SIFT.

S. DISCUSSION

In this work, we employed unsupervised feature learning
techniques with the objective of discovering meaningful
structure in scenes, which would be helpful to perform clas-
sification. The final results are encouraging: our algorithms
construct descriptors that perform comparably to highly non-
linear, hand-crafted descriptors, such as SIFT.

We experimented with multimodal learning, to be able to
discover representations that would be relevant to describe not
only segments of images, but also textual tags. However, our
results show that the tags do not help learning - this was not
surprising, since they are not descriptive of the image patches
in general. At the limiting case where only the tags are taken
into consideration, no learning occurs.

In this scenario, an usual autoencoder performs best -
i.e., the case where the tags are not taken into consideration.
Gabor-like dictionaries, showing very well-defined edges,
were discovered directly from a database containing more
than 300,000 images crawled from Flickr.

Classification was implemented by applying usual schemes,

as spatial pyramid pooling and SVM. As expected, the au-
toencoder performs best among the other methods, which
included nonzero TW. Our best results are still not compa-
rable to the state-of-the-art results given by HOG2x2 in [1]],
but are interesting in the sense that they are comparable to
complex descriptors without any parameter tuning.

Future work is intended to take the next step and learn rep-
resentations based on different network architectures, such as

GT P Tags reconstruction

Tags

00]

Spatial Pyramid
pooling (mean, max)

- 00

Feature extraction:
convolution

XX

Full-size image

Fig. 6. Architecture to be employed in future work: the full
image is considered as the input, and the discovered structure
aims at representing the tags accurately.

the one in Figure [6] In this case, the full image is consid-
ered, and thus we expect it to perform much better, since in
this scenario the tags should be coherent with the image under
consideration.

6. ACKNOWLEDGEMENTS

The author acknowledges Andrew Maas and Maurizio Cali-
garis for the help with discussions and implementations.

7. REFERENCES

[1] J. Xiao, J. Hays, K. Ehinger, A. Oliva, A. Torralba “SUN
Database: Large Scale Scene Recognition from Abbey to
Zo0o,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) San Francisco, CA, June 2010

[2] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A. Ng
“Multimodal Deep Learning,” International Conference
on Machine Learning Bellevue, WA, 2011

[3] C.-C. Chang, C-J. Lin “LIBSVM: a library for support
vector machines,” ACM Transactions on Intelligent Sys-
tems and Technology, 2011.



	 Introduction
	 Feature Learning
	 Classification Scheme
	 Experiments and results
	 Multimodal Learning
	 Scene Classification

	 Discussion
	 Acknowledgements
	 References

