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Abstract—Reduced reference video quality assessment tech-
niques provide a practical and convenient way of evaluating
the quality of a processed video. In this paper, we propose
a method to efficiently compress standardized VQM (Video
Quality Model) [1] features to bit-rates that are small relative
to the transmitted video. This is achieved through two stages of
compression. In the first stage, we remove the redundancy in the
features by only transmitting the necessary original video features
at the lowest acceptable resolution for the calculation of the final
VQM value. The second stage involves using the features of the
processed video at the receiver as side-information for efficient
entropy coding and reconstruction of the original video features.
Experimental results demonstrate that our approach achieves
high compression ratios of more than 30× with small error in
the final VQM values.

I. INTRODUCTION

Video quality monitoring is becoming a crucial part of
modern video transmission systems. Reduced reference (RR)
video quality assessment techniques [2] are gaining more and
more interest since they enable the judgment of the perceptual
quality of a processed video sequence by comparing certain
features calculated from the original and the corresponding
processed videos. Hence, they eliminate the need of the
availability of the original video for quality assessment.

In order to possess practical significance, the bit-rate for
sending the RR quality features should be small when com-
pared to the bit-rate of the transmitted video. Since PSNR is
the most widely used measure of video quality, prior work [3]–
[5] proposed sending compressed features of the original
video and using them to obtain an acceptable estimate of the
PSNR of the received processed video. Similar features can be
obtained at the receiver side from the processed video. Hence,
authors in [4]–[6] suggest using the processed video features
as side-information for efficient compression of the original
video features through Distributed Source Coding (DSC) [7],
and efficient decoding of these compressed features through
Minimum Mean Squared Error (MMSE) reconstruction [6].

The NTIA general Video Quality Model (VQM) [1] has
been selected by both ANSI [8] and ITU [9] as a video
quality assessment standard based on its performance [1].
Unfortunately, this general model requires a bit-rate of several
Mbps (more than 4 Mbps for 30 fps, CIF size video) of quality
features for the calculation of the VQM value, which prevents
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this model from being applied in a practical system. A low-
bandwidth VQM is proposed by the same authors [10] in an
attempt to reduce the bit-rate required for the transmission of
VQM features.

In this paper, we study the problem of compression of VQM
features and propose a method for efficient compression of
these features that can be applied to any VQM model defined
in [1], [10], [11]. The proposed compression is achieved
through two stages. First, we remove the redundancy in the
VQM features by only transmitting the necessary features at
the lowest acceptable resolution for the calculation of the final
VQM value. The second stage is inspired by [5], [6] and it
involves efficient entropy coding of the original video features
using DSC and dequantization using MMSE reconstruction.

The remainder of the paper is organized as follows. Sec-
tion II presents a review of the VQM standard explaining
how different VQM features and model parameters are cal-
culated. In Section III, we discuss the proposed technique
for compression of VQM features, including feature selection,
subsampling, quantization and efficient entropy coding using
DSC. Finally, in Section IV, we present experimental results
showing the performance of the proposed compression method
in terms of achieving high compression ratios with only small
error in the VQM parameters and final values.

II. REVIEW OF VQM STANDARD

In [1], the authors refer to the video transmission system
under test as the Hypothetical Reference Circuit (HRC). The
VQM value is a number between 0 and 1 that is used to
judge the visual quality of the processed video after passing
through the HRC, where lower values indicate better quality.
To calculate a VQM value, VQM features are calculated from
the original video and sent over the video transmission system
through an ancillary data channel. On the receiver side, the
same VQM features are calculated from the processed video.
VQM features from the original and processed videos are com-
pared to provide VQM model parameters. These parameters
are linearly combined to obtain the final VQM value. Details
of VQM calculation steps are described as follows.

A VQM quality feature is defined [1], as ‘a quantity of
information associated with, or extracted from, a 3D block of
a video stream (either original or processed)’. The 3D blocks
used for feature calculation are referred to as spatial-temporal
(S-T) regions. For example, for a 30 fps video, an S-T region



Fig. 1. Block diagram of the proposed VQM features compression technique. On the transmitter side, VQM features are extracted from the
original video, subsampled, quantized, encoded using DSC and transmitted over an ancillary data channel. On the receiver side, corresponding
features are extracted from the processed video, subsampled and used as side-information (dotted lines) in Slepian-Wolf decoding and MMSE
reconstruction of the original video features. Finally, features from original and processed videos and used in the calculation of VQM model
parameters and VQM final value.

of dimensions (8× 8× 0.2 sec.) means that each (8× 8× 6)
3D block of pixels is used to calculate one feature value.

VQM features are either based on spatial gradients, chromi-
nance information, contrast information or absolute temporal
information (ATI). Four different features are defined in the
general VQM [1]: a) fSI which is sensitive to changes in
the spatial activity like blurring and noise, b) fHV which is
sensitive to changes in the orientation of spatial activity, c)
fCOHER COLOR which concatenates two features fCb and
fCr calculated from Cb and Cr color components respectively,
and finally d) fCONT ATI defined as the product of fCONT

feature measuring the contrast information and fATI feature
measuring the absolute temporal information. Different per-
ceptibility thresholds are used during the calculation of fSI ,
fHV and fCONT ATI features.

Low-bandwidth VQM [10] uses similar fSI , fHV and
fCOHER COLOR features although these features are calcu-
lated on bigger S-T regions of size (32×32×1 sec.). Instead of
fCONT ATI , low-bandwidth VQM utilizes a simpler feature
fATI rms that is calculated over the whole video frames
and not S-T regions to describe the temporal information.
To reduce the bit-rate needed for sending the features, low-
bandwidth model uses non-uniform quantizers ranging from 8
to 10 bits to quantize different VQM features.

Note that for all VQM models, a calibration step [11]
between the original and processed videos is performed before
calculating the features. In this paper, we do not require this
calibration step since we use original and processed videos
which are aligned spatially and temporally and have no gain
and level offset.

To calculate a VQM model parameter, features from the
original and processed videos are compared using a suitable
comparison function. Some comparison functions treat the
resulting positive and negative values separately since they
produce different effects on quality perception. For example,
an increase in the contrast of the processed video may be due

to blocking artifacts, while a decrease may indicate a blurring
effect. Comparison functions are non-linear including error
ratio, logarithmic ratio and Euclidean distance. Error pooling
along spatial and temporal directions using non-linear collaps-
ing functions is performed on the result of the comparison
function to result in a single parameter value. Finally, an
optional step of non-linear scaling and/or clipping of the
parameter value may be performed.

A final VQM value is calculated as a linear combination of
VQM model parameters. Linear weights are chosen through
subjective tests to better match mean opinion score (MOS)
results. VQM models differ in the comparison functions and
the spatial and temporal collapsing functions used to calculate
the model parameters and the linear weights used to combine
these parameters. For more details on the calculation of
different VQM models, the reader is referred to [1], [10],
[11]. In this paper, we focus on general VQM and low-
bandwidth VQM, although the proposed techniques can be
directly applied to any other VQM model.

III. COMPRESSION OF VQM FEATURES

Our proposed compression method of VQM features ex-
ploits three main observations. First, VQM features measure
different properties of the video. Thus, depending on the
HRC under test, some features may be unnecessary, since the
degradations they measure are not introduced by this HRC.
Second, during the quantization of the original video features,
we make use of the fact that our final goal is to minimize
the distortion in the VQM model parameter values, even if we
introduce high distortion in the compressed VQM features.
And third, the high correlation between the original video
features and the processed video features suggests the use of
the processed video features as side-information for efficient
entropy coding and better decoding of the quantized features
of the original video. Fig. 1 presents a block diagram of the
proposed technique and details are described in the following
subsections.



A. Feature Selection and Feature Subsampling

We refer to the MSE between a VQM feature of the original
video and the compressed version of this feature as VQM
feature distortion. Similarly, we refer to the squared value of
the difference between the VQM model parameter calculated
using the original video feature and the same model parameter
calculated using the compressed version of the original video
feature as VQM parameter distortion. Our goal is to minimize
parameter distortions in order to preserve the final VQM
value. Note that when calculating parameter distortions, the
parameter values are always weighted by the weight used in
the calculation of the final VQM value. This ensures that we
take into account the relative importance of the parameters in
terms of the distortion they induce in the VQM value.

As mentioned in Section II, VQM features measure different
properties of the video sequence. Thus, depending on the HRC
under test, some features may be unnecessary. For example,
if we consider an HRC where we only observe blurriness or
blocking artifacts but not motion artifacts, we obtain negligible
values for the VQM parameters calculated from fCONT ATI .

To decide which VQM features to transmit, we define a
decision threshold Tselect. If the squared value of the VQM
parameter resulting from a certain feature is always less than
Tselect for a certain HRC, this feature is not transmitted, and
we assume a zero value for the corresponding parameter when
we calculate the final VQM value. Otherwise, this feature is
transmitted, and we go to the next step of feature subsampling.

The size of S-T regions for different VQM features is
designed to compromise between the amount of data sent
for each feature and the accuracy of the feature in detecting
localized artifacts. In order to reduce the number of samples
for each feature and still keep the VQM calculations standard
compliant, we decide not to change the size of S-T regions
but subsample the VQM features instead, with a spatial
subsampling ratio rS and a temporal subsampling ratio rT .

In spatial subsampling, we keep every rthS row and column
in the feature data, shifting the subsampling grid at each time
interval defining the temporal extent of S-T regions. This re-
sults in data reduction to 1/r2S of the original size. In temporal
subsampling, we keep the features for S-T regions calculated
every rT time intervals. This results in data reduction to 1/rT
of the original size. Hence, the subsampled feature data size
is 1/r2SrT of the original size. To decide the values of rS and
rT for a certain feature, we define a threshold Tsubsample, try
all possible combinations of rS and rT and choose the values
that result in the largest data reduction, while the distortion in
the corresponding VQM parameter is below Tsubsample. The
subsampling operation is shown in Fig. 1. We refer to the
original video feature as X , the processed video feature as Y
and their subsampled versions as Xs and Ys respectively.

In practice, the decision of the subsampling ratios rS and
rT for each feature is performed using a training set of
different processed videos that represent the HRC under test.
As a conservative choice, the smallest spatial and temporal
subsampling ratios for each feature over the whole training

set is applied in the actual video transmission.
In the case of changing transmission system characteristics,

another option is to perform an adaptive choice of subsampling
ratios. This is achieved by first transmitting VQM features at
their full resolution. The receiver calculates VQM parameters
based on the full resolution features, and recalculates the same
parameters based on different subsampled versions of the same
received features. The receiver decides the subsampling ratios
and communicates them back to the transmitter.

B. Feature Quantization and MMSE Reconstruction

To further compress the data of the original video features,
we quantize the subsampled original video features Xs as
shown in Fig. 1. We use a uniform mid-tread quantizer with
M bits (2M levels). The determination of the value of M for
each feature ensures the optimal rate allocation among features
and is performed in a Lagrangian optimization framework. For
each feature, we try different values of M and for each value,
we calculate the cost function J = D + λR; where D is the
distortion in the parameter value(s) calculated from this feature
as defined above and R is the bit-rate spent on sending the
subsampled and quantized original video feature Xsq . We fix
the value of λ and choose the value of M that minimizes the
cost function J for each VQM feature.

For the features that use a perceptibility threshold, there is
often a peak in the distribution of the feature values at this
threshold. It is beneficial to have a representative level at this
peak. This is achieved by first subtracting the perceptibility
threshold from all the feature values so the peak in the
distribution is translated to zero and then using the same
uniform quantizer as before. The perceptibility threshold is
added back after feature decoding.

At the receiver side, we use the features of the processed
video Ys as side-information to obtain a better estimate of the
original video features X̂s. As shown in Fig. 1, the original
video feature is decoded as the MMSE reconstruction given
the quantized feature Xsq and the processed video feature Ys.
The quantized feature value Xsq defines the interval where the
original feature value lies. If this interval is bounded by XLB

and XUB ; then the MMSE reconstruction X̂s is given by

X̂s = E [Xs|Xsq, Ys] =

∫ XUB

XLB

xsfXs|Ys
(xs|ys)dxs∫ XUB

XLB

fXs|Ys
(xs|ys)dxs

(1)

We model fXs|Ys
(xs|ys) as a normal distribution

N
(
ys, σ

2
)

with mean ys and variance σ2. This distribution
represents how correlated Xs and Ys are. σ2 is unknown to
the receiver; however, it can be estimated using Maximum
Likelihood (ML) estimation from N samples of Xsq and Ys.
The ML estimate of σ2 is given by [5]

σ2 = σ̂2
ML = 1

N

N∑
i=1

E
[
(Xs − Ys (i))2 |Xsq (i) , Ys (i)

]
(2)



C. Entropy Coding Using DSC

Since the processed video features Ys are highly correlated
to Xs and are already available at the decoder, we can use DSC
to efficiently encode Xsq at a small bit-rate, and then use Ys as
side-information to decode the Slepian-Wolf coded Xsq . Each
bitplane in Xsq is coded at the Slepian-Wolf encoder using
rate-adaptive LDPC codes [12] as in [5]; where the choice of
the coding bit-rate depends on the worst allowable processed
videos that can result from the HRC under test. The block
diagram in Fig. 1 shows how DSC is incorporated into the
whole system.

D. Compression of Low-Bandwidth Model Features

Low-bandwidth VQM requires a much lower bit-rate than
general VQM because of larger S-T regions and quantization
of the feature values. In [10], the authors report that they
can send VQM features at 10 kbps for 30 fps, 672 × 384
video. Our own experiments indicate that reducing the original
features bit-rate makes feature values very sensitive to any
subsampling or further quantization as described in Sec-
tions III-A and III-B. We obtain unacceptably large changes
in the corresponding parameter values when we subsample or
quantize low-bandwidth VQM features. Therefore, we apply
lossless compression to low-bandwidth VQM. This is achieved
through directly applying DSC on the original VQM features
X . This allows us to retain the exact VQM value and still
obtain high compression ratios as will be shown in Section IV.

IV. EXPERIMENTAL RESULTS

We perform experiments with seven CIF size standard
video sequences, Foreman, Football, Mother and Daughter,
Mobile, Carphone, Stefan and Tempete. We consider two
types of HRCs. The first HRC (referred to as HRC 1) has
only compression artifacts and no network losses. The videos
are encoded in H.264 standard with quantization parameters
(QPs) ranging from 22 to 38 which results in different video
qualities and hence different VQM model parameters. The
second HRC (referred to as HRC 2) considers network losses.
The videos are compressed at high quality (QP = 26) and then
transmitted through an error-prone network where packets are
dropped randomly at packet loss rate (PLR) ranging from 1%
to 16%. The decoder performs frame copy error concealment
to account for network losses. We use JM Reference Software,
version 16.1 [13] for video coding and BVQM Software,
version 1.3 [14] for calculating VQM features and model
parameters. Section IV-A discusses the results for general
VQM model and Section IV-B discusses the results for low-
bandwidth VQM model.

A. General VQM Results

For general VQM experiments, the video sequences are
divided into a training set containing the first four videos men-
tioned above and a test set containing Carphone, Stefan and
Tempete sequences. Based on the training set, our experiment
on feature selection indicates that for HRC 1 with compression
artifacts only and for HRC 2 with random but stationary packet

losses, there are not many artifacts in the temporal direction
which results in negligible value of the parameter calculated
from fCONT ATI . We use Tselect = 10−5 and we find that
fCONT ATI is not selected in both HRCs. Based on the S-T
region sizes defined in the general VQM standard, choosing
not to transmit fCONT ATI results in 22% reduction in the
total VQM features data.

The experiment on feature subsampling uses the first non-
adaptive methodology described in Section III-A on our train-
ing set. The goal is to choose suitable subsampling ratios rS
and rT for each VQM feature. We use Tsubsample = 10−5. As
expected, the smallest spatial and temporal subsampling ratios
usually result from the worst quality processed videos in each
HRC. Table I presents the subsampling ratios that we obtain
for different features. We find that fHV is most sensitive to
subsampling. The total reduction in the size of VQM features
data after feature selection and feature subsampling is 86%
for HRC 1 and 81.5% for HRC 2.

TABLE I
SUBSAMPLING RATIOS FOR GENERAL VQM

General VQM HRC 1 HRC 2
Feature rS rT rS rT
fSI 3 1 1 1
fHV 1 1 1 1

fCOHER COLOR 2 2 2 2
fCONT ATI not selected not selected

The next step in compressing VQM features is to quantize
the subsampled features. To decide the number of bits M for
quantizing each VQM feature in an optimal rate allocation
framework, we perform the following experiment: All videos
in the training set are transmitted through the same HRC with
the same conditions (same QP for HRC 1 and same PLR for
HRC 2). The subsampled VQM features are quantized with
uniform quantizers with M ranging from 4 to 9 bits. For
each value of M , we calculate the average bit-rate spent on
each feature over the whole training set. We also calculate
the average parameter distortion resulting from using the
subsampled quantized features as compared to the unquantized
features at full resolution. If a feature is used to calculate
more than one parameter, the parameter distortions are added.
Example results for average bit-rates and average parameter
distortions at different values of M are shown in Fig. 2. These
results represent HRC 1 at QP = 26. The curves show that fHV

is most sensitive to the feature quantization operation.
For all QPs in HRC 1 and PLRs in HRC 2, we fix a value

of λ and calculate the cost function J = D+λR; where D is
the average parameter distortion and R is the average bit-rate
calculated as mentioned before. We use a small value of λ
to keep minimal parameter distortions and preserve the final
VQM values. For each VQM feature, we detect the values
of M that minimize J , and these values of M are averaged
over different QPs in HRC 1 and different PLRs in HRC 2
to obtain a single value of M to be used for the quantization
of this feature. Table II presents the number of bits M for
the quantizers used in HRC 1 and HRC 2. We observe that



0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
x 10

−4

Rate (kbps)

S
qu

ar
ed

 e
rr

or

Parameters from f
SI

10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

Rate (kbps)

S
qu

ar
ed

 e
rr

or

Parameters from f
HV

0 10 20 30 40 50 60
0

0.5

1

1.5

2
x 10

−5

Rate (kbps)

S
qu

ar
ed

 e
rr

or

Parameters from f
COHER_COLOR

Fig. 2. Average bit-rates and parameter distortions for different VQM features (HRC 1, QP = 26). M varies from 4 to 9 bits.

TABLE II
NUMBER OF BITS M FOR VQM FEATURES QUANTIZATION

General VQM Feature HRC 1 HRC 2
fSI 8 bits 7 bits
fHV 9 bits 9 bits

fCOHER COLOR 5 bits 5 bits

fHV needs fine quantization, while fCOHER COLOR can be
subjected to coarser quantization.

Finally, we use uniform quantizers with values of M indi-
cated by Table II to quantize VQM features for all videos. In
Fig. 3, we present the total minimum decodable bit-rates spent
on encoding VQM features and the corresponding absolute
error in the final VQM value. The figure indicates the effect
of all the compression stages proposed in Section III. Figs. 3(a)
and 3(b) show the results for HRC 1 and Figs. 3(c) and 3(d)
show the results for HRC 2. Training set results represent
worst case results in terms of the largest bit-rate and absolute
error over all the videos in our training set.

As the processed video quality becomes worse (higher QP
in HRC 1 and higher PLR in HRC 2), the bit-rate needed for
sending VQM features increases because of lower correlation
between original and processed video features, which makes
DSC less efficient. Also, the absolute error in the final VQM
value has an increasing trend since lower correlation between
original and processed video features makes MMSE recon-
struction less efficient as well. We observe that bit-rate results
are comparable for the training and the test set. Absolute error
results are slightly worse for the test set. However, absolute
errors are always below 0.03 with negligible effect on the
accuracy of the general VQM model.

According to the S-T region sizes defined for the general
VQM [1], we need to transmit 1.41 × 105 feature values per
sec. for 30 fps, CIF size video. If single precision floating
point format (32 bits) is used for signaling these features, this
means the uncompressed full resolution features are transmit-
ted at 4.512 Mbps. Fig. 3 indicates that using our proposed
technique, VQM features are compressed to bit-rates below
150 kbps. Thus, we can achieve a compression ratio of more
than 30× with only small error in the final VQM value.

B. Low-Bandwidth VQM Results

As mentioned in Section III-D, we perform lossless com-
pression on VQM low-bandwidth model features to preserve

the exact precision of the final VQM value. We compare the
proposed technique of using DSC for feature compression
against conventional coding techniques of fixed length coding
and Huffman coding. Fig. 4 presents the total bit-rates needed
for DSC compression comparing them to fixed length coding
and Huffman coding for three video sequences: Mother and
Daughter, Mobile and Football representing low, medium and
high motion respectively. We find that the minimum decodable
bit-rates for sending DSC-compressed low-bandwidth VQM
features are between 1 and 3.5 kbps for 30 fps, CIF size video
(compared to 4.65 kbps for fixed length coding). These bit-
rates are very small compared to the rates used for encoding
the video at an acceptable quality.

DSC has better performance than Huffman coding due to
the efficient utilization of the processed video features in the
compression of the original video features. Fig. 4(a) shows
the results for HRC 1 and Fig. 4(b) shows the results for
HRC 2. As QP and/or PLR increase, the processed video
has more artifacts and its features are less correlated to the
features of the original video, and hence the total rate of the
DSC-compressed VQM features increases. We observe a large
increase in the bit-rate for Football at high PLRs versus a small
increase for Mother and Daughter. This is due to the high
motion in Football that spreads the error propagation artifacts
across the whole sequence after frame copy error concealment.
This is not the case for Mother and Daughter where artifacts
do not propagate as much because of low motion.

V. CONCLUSIONS

We present a method to compress VQM features to bit-rates
that are affordable to current video transmission systems. This
method relies on the use of the processed video features as
side-information on the receiver side. For general VQM model,
we manage to remove the redundancies in the feature data
through feature selection and feature subsampling. We perform
optimal bit-rate allocation between different VQM features
and efficiently encode the compressed features using DSC and
decode them using MMSE reconstruction. For low-bandwidth
VQM model, we efficiently perform lossless compression of
VQM features using DSC and compare the performance to
conventional Huffman coding.

Experimental results show the efficiency of the proposed
techniques in terms of achieving a total compression ratio
of 30× with small error in the general VQM model value.
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Fig. 3. Total minimum decodable bit-rates of VQM features and absolute errors in the final VQM value for different video sequences and
HRCs. (a) HRC 1, total bit-rates, (b) HRC 1, VQM absolute errors, (c) HRC 2, total bit-rates and (d) HRC 2, VQM absolute errors.
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Fig. 4. Total bit-rates for DSC and Huffman coding of low-bandwidth VQM features. (a) HRC 1 and (b) HRC 2.

For the low-bandwidth model, we preserve the exact value of
the final VQM with DSC compression that outperforms fixed
length coding and Huffman coding. Our results indicate that
we can send low-bandwidth VQM features at a negligible bit-
rate compared to the rate needed for video transmission.
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