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ABSTRACT

We introduce an Entropy-Constrained Overcomplete-
Based coding scheme for natural images. The traditional
overcomplete-based framework for compression is improved
in its main components. The main contribution of the work is
a new dictionary learning algorithm for overcomplete-based
compression, referred as Entropy-Constrained Dictionary
Learning. We show that the presented scheme outperforms a
basic DCT coder with gains of up to2 dB.

1. INTRODUCTION

Recently, there has been a wide interest in sparse coding of
signals using overcomplete dictionaries. The termovercom-
plete refers to a set of basis vectors with a size bigger than
the one needed to span the data subspace. For a signal inR

N ,
such an approach employsK basis vectors, withK > N (in-
stead ofN ). The objective of such methods is then to have
more basis vector options to select from and therefore a bet-
ter chance of finding a smaller number of basis whose linear
combination matches the signal vector. Consequently, at the
entropy coding stage, we expect that fewer bits will be needed
to code the resulting coefficients.

In usual lossy compression, with the help of transform
coding, the energy of the signal vector gets compacted in few
coefficients. Quantization follows, setting many of the coef-
ficients to zero, being the only stage of the pipeline which
introduces distortion. On the other hand, in the overcom-
plete approach, another lossy stage is introduced: the system
being underdetermined, we usually can only get an approx-
imation of the signal to represent, due to the constraints im-
posed on finding the solution. However, we will see that these
two stages can be actually integrated in only one, in which
we trade-off distortion and complexity in a Lagrangian cost
framework. As we show in this work, that’s the key idea of
using the overcomplete framework for compression.

Some work has been done on the compression of images
using overcomplete dictionaries [1, 2]. They compare favor-
ably in some cases with respect to a basic DCT/JPEG frame-
work. Nevertheless, the better performance is achieved by a
restriction on the nature of the data: in [1], for example, the
application of facial images is considered. In this work, we

analyze the use of overcomplete dictionaries for compression
of natural images.

There are two stages in a general overcomplete coding
method: Sparse Coding and Dictionary Learning. Sparse
coding assumes an overcomplete dictionary is known and
seeks the best representation of the input signal. Dictionary
learning is the process that builds an overcomplete dictionary.

Knowing the overcomplete dictionary, the sparse coder
finds a set of bases among all the dictionary vectors to rep-
resent the given signal. That is to say, given an overcomplete
dictionaryA ∈ R

N×K , the sparse coder outputs a represen-
tation of the input signal vectory ∈ R

N as the vector of co-
efficientsx ∈ R

K , such thaty ≈ Dx or ‖y −Dx‖2 ≤ ǫ.
Dictionary Learning works by training a dictionary based

on a set of examples. That is, for a given input set withP

samplesY = yPi=1, it searches the dictionaryA which will
lead to the best representation ofY using a set of coefficients
X = xP

i=1.
In this work, we propose a compression scheme using the

overcomplete approach. This comprises a proposed entropy-
constrained dictionary learning method and a rate-distortion-
optimized sparse coding method, which was initially envis-
aged in [3].

After briefly introducing the basic sparse coding methods
in section 2, we present a rate-distortion-based sparse cod-
ing algorithm. In section 3, we describe general dictionary
learning techniques, discuss their properties and proposean
entropy-constrained dictionary learning method. In section 4,
we present simulation results of the proposed compression
scheme for a set of natural images and compare it to a ba-
sic DCT-based framework as well as to JPEG and JPEG2000
standards.

2. SPARSE CODING

As previously discussed, sparse coding is the process of find-
ing the best representation of a given signal based on a known
dictionary. The problem of finding the optimal set of basis
vectors from a dictionary, according to a certain constraint,
is known to be an NP-hard problem [4], so approximate so-
lutions are needed. One of the highly used greedy optimiza-
tion techniques for solving this problem is Matching Pursuit



(MP) [5]. We will briefly describe MP and some variants of it
in the following subsections.

2.1. Matching Pursuit

Matching Pursuit handles the problem of finding the best co-
efficient vectorx for the given input signaly and dictionary
A through a greedy iterative process. At each iteration, MP
projects the residualr (initially, r = y) on all basis vectors of
A. It chooses the basis that gives maximum projection. The
projection result is then the coefficient, which is added to the
current vectorx. The residual is updated asr = y − Ax,
and this process is repeated by projecting the new residual
and picking one new nonzero coefficient in each step. Two
stopping criteria are commonly used for MP: 1) a predefined
number of non-zero coefficients is reached, or 2) the norm of
the residual achieves a predefined thresholdǫ.

At each stage of MP, the orthogonalization of the resid-
ual with respect to each new selected dictionary component
can introduce components of previously selected basis vec-
tors into the residual. To avoid that, Orthogonal MP (OMP)
has been proposed by [6]. In OMP, the least-squares approxi-
mation ofy using all currently selected vectors is found. The
residual is calculated as before, with this new set of coeffi-
cients (the previously selected coefficients also change when
adding a new nonzero coefficient). Compared to MP, this
method has shown to result in a smaller number of coeffi-
cients for a fixedǫ. OMP is the most employed algorithm for
sparse coding in the literature. In this work, we employ OMP
as the basic sparse coding algorithm, due to its simplicity and
good performance.

2.2. Rate-Distortion OMP

MP and its variants have been highly used for sparse cod-
ing. The selection process of these, however, is based on
the minimization of a simple distortion cost. For compres-
sion purposes, it is know that a better approach is to also con-
sider the rate cost of the selections, with the widely used La-
grangian costJ = D + λR being its standard formulation.
To deal with this issue, Rate-Distortion OMP (RD-OMP) was
first suggested in [3] (however, to the best of our knowledge,
it was not used in recent overcomplete-based compression
schemes). In such a scheme only a subset of the coefficient
vector has nonzero value (only these will be coded); therefore
for every block, the rate is calculated as:Rblock = Rind +
Rcoeffs+REOB . In each block, we need to send the indexes
of the nonzero coefficients (Rind), their values (Rcoeffs), and
some control bits to indicate the end of the block (REOB).
As REOB is naturally fixed, it doesn’t need to be taken into
account in the sparse coding process. RD-OMP selection pro-
cess stops when the improvement on the overallJ cost is very
small (no need to impose a predefined number of nonzero co-
efficients). We will employ RD-OMP in the proposed com-
pression scheme, and discuss its performance in section 4.

3. DICTIONARY LEARNING

Most of the dictionary learning algorithms in the literature
are a generalization of the K-means algorithm used in vector
quantization training [7]. The learning approach is performed
in a two-step process. The first step finds the coefficients for
a given dictionary (sparse coding). Then, in the second step,
given the coefficient results of the first step, the dictionary
gets updated. This process is repeated until a stopping crite-
ria is reached. Among many learning methods, we have cho-
sen K-SVD and MOD algorithms because they are the most
widely employed algorithms and have shown to provide good
results with a simple framework. In the following subsections
we will briefly introduce these algorithms and, based on them
and Entropy-Constrained Vector Quantization (EC-VQ), pro-
pose the “Entropy-Constrained Dictionary Learning” method.

3.1. K-SVD

K-SVD [8] is one of the highly deployed dictionary learn-
ing algorithms. K-SVD has two main parts, the sparse cod-
ing stage and the dictionary update stage, as shown in Algo-
rithm 1.

Algorithm 1 K-SVD

Initialization: Set the dictionary matrixA(0) ∈ R
N×K with

l2 normalized columns
Setn = 1
Repeat until stopping rule is satisfied:
1.Sparse Coding: Compute the coefficient vectorsxi for
eachyi, by approximating the solution of:

minxi
‖yi −Axi‖

2, i = 1, 2, ..., P subject to
NNZ(xi) ≤ T0

2.Dictionary Update: For each basis vectork =
1, 2, ...,K in A(n−1)

2.1Define the group of input vector that uses this basis
vector,wk = {i | 1 ≤ i ≤ P, xk

T (i) 6= 0}
2.2Compute the overall representation error matrix
Ek = Y −

∑
j 6=k djx

j
T

(xk
T : vector of coefficients that uses basisk)

2.3RestrictEk to the input vectors corresponding towk,
and obtainER

k

2.4Apply SVD decompositionER
k = U∆V T .

2.5Choose the updated dictionary basis vectord̃k to be
the first column ofU . Update the coefficient vectorxk

R

to be the first column ofV multiplied by∆(1, 1)

Setn = n+ 1

In the sparse coding stage, any approximation pursuit
method, i.e. OMP, can be used as long as the resulting
solution satisfies the constraint of fixed and predetermined
number of nonzero coefficients,NNZ(x) ≤ T0. It is worth



mentioning that these algorithms can be adapted to use an
error-based stopping criterion.

In the “Dictionary Update” stage of K-SVD, the multi-
plication AX can be decomposed as the sum ofK rank-1
matrices.K − 1 of these terms are assumed to be fixed while
kth term gets modified. The SVD decomposition finds the
closest rank-1 matrix which approximates the termEk. This
operation minimizes the error‖Ek − dkx

k
T ‖

2. The SVD de-
composition ofEk may violate the sparsity constraint soER

k

is constructed based onwk, the group of indexes ofY that
usesdk, i.e., the input samples that use thekth basis vector
are fixed (the nonzero elements ofxk

T remain in the same po-
sition), but the coefficient associated to each of these changes.
As stated in the algorithm, the SVD decomposition will result
in an updated dictionary vector̃dk. The corresponding coeffi-
cient vector gets updated and the same process gets repeated
for every basis vector of the dictionary.

3.2. Method of Optimal Directions (MOD)

The other highly used overcomplete dictionary learning ap-
proach in the literature is the Method of Optimal Directions
(MOD) [9]. As shown in Algorithm 2, MOD follows the same
sparse coding approach as K-SVD. However, in the dictionary
updating stage, MOD assumes the coefficient vectorxi for the
input vectoryi is fixed while the dictionary is updated. The
overall Mean Square Error (MSE) is given by:

‖E‖2 = ‖e1, e2, ..., eP ‖
2 = ‖Y −AX‖2 (1)

Taking the derivative of the above formula with respect to A
(X and Y are fixed),(Y −AX)XT = 0, results in the follow-
ing dictionary update expression:

A(i+1) = Y X(i)T .(X(i)X(i)T )(−1) (2)

MOD derives the best possible dictionary adjustment (in a
MSE sense) based on (2) for a fixed coefficient matrixX.

Algorithm 2 MOD

Initialization: Set the dictionary matrixA(0) ∈ R
N×K with

l2 normalized columns
Setn = 1
Repeat until stopping rule is satisfied:
Sparse Coding: Compute the coefficient vectorsxi for
eachyi, by approximating the solution of:
minxi

{‖yi −Axi‖
2, i = 1, 2, ..., P subject to

NNZ(xi) ≤ T0

Dictionary Update: Given the input dataY and coefficient
matrixX(n), update the dictionary as
A(n+1) = Y X(n)T .(X(n)X(n)T )(−1)

Setn = n+ 1

3.3. Entropy-Constrained Dictionary Learning

We propose an Entropy-Constrained Dictionary Learning
(EC-DL) algorithm which employs a more appropriate scheme
in the context of image compression. This is the main con-
tribution of this work. As shown in Algorithm 3, in addition
to “Sparse Coding” and “Dictionary Update”, EC-DL in-
troduces a third stage called “Rate Cost Update”. We will
discuss each stage of the algorithm in more details. EC-DL
operates based on a rate-distortion Lagrangian cost and stops
the iterative learning process if the cost doesn’t significantly
decrease any further.

As discussed in previous subsections, most of the ex-
isting dictionary learning algorithms are designed based on
distortion-based sparse coding. In section 2, we presented
RD-OMP, an evolution of OMP using a Lagrangian rate-
distortion framework. This is the algorithm that we use for
the “Sparse Coding” stage of EC-DL.

Algorithm 3 Entropy Constrained Dictionary Learning

Initialization: Set the dictionary matrixA(0) ∈ R
N×K with

l2 normalized columns
Setn = 1, J0 = ∞
Sparse Coding: Use RD-OMP, as presented in section 2.2.

Rate Cost Update: Update probability mass functions of
coefficients and indexes. Estimate the rate cost of each of
them using the relationlm = − log2 p(m)

Dictionary Update: Given the input dataY and coefficient
matrixX(n), update the dictionary as

A(n+1) = Y X(n)T .(X(n)X(n)T )(−1)

Lagrangian cost update: J (n) = D(n) + λR(n)

if J(n−1)−J(n)

J(n−1) < ǫ then
Stop the algorithm

else
Setn = n+ 1
go toSparse Coding

end if

Similarly to EC-VQ for training data, after determining
the coefficient matrix, the probability mass functions of the
non-zero coefficients and their corresponding indexes are up-
dated in the “Rate Cost Update” stage. Based on these prob-
abilities, the codeword length of the coefficients and the in-
dexes are determined usinglm = − log2 p(m).

In the dictionary update stage of K-SVD, as the dictio-
nary gets modified, the coefficients will vary; so, it is not
possible to control the rate in this stage, therefore reduction
of the Lagrangian cost function is not assured. On the other
hand, MOD updating method provides the optimal adjustment
while preserving the coefficients. The latter is the employed



method in EC-DL. It is interesting to notice again the similar-
ity with EC-VQ, which also assumes fixed coefficients while
updating the representative levels (centroid calculation).

All the presented dictionary learning methods have non-
guaranteed convergence. Since the performance of the
“Sparse Coding” stage is not optimal, its resulting cost (La-
grangian or distortion only) might increase. We use a set of
techniques to overcome this difficulty. First, we build the
initial dictionary by picking vectors of the input matrix,Y ,
in equally spaced positions, so the dictionary is more repre-
sentative of the input vectors (as opposed to the use of the
first K input samples, which could lead to an unsatisfactory
local minimum, especially for images). Second, we always
keep the best dictionary found so far and update it to a newer
one only if the latter is less costly than the former. Third,
we allow the dictionary search to grow in cost up to some
threshold because some oscillations might occur, and a better
match might be found after them.

4. EXPERIMENTS

Our experiments consisted of simulations with the test images
Lena, Boats, Harbour andPeppers of resolution128×128. To
provide a fair comparison, the entropy coding was performed
identically for every method: using the optimal coder for each
subband. We used blocks of size8 × 8 as input data and
quantization step,q, varying from 8 to 128 in all experiments.
Theλ factor was calculated using the expressionλ = 0.2q2.
Three dictionary sizes (K) were employed: 128, 256 and 512.
In the following subsections, we present results for each ofthe
enhanced algorithms and for the overall compression scheme.

4.1. Sparse Coding comparison

We implement OMP and RD-OMP for a performance com-
parison. OMP is used withNNZ varying from 5 to 15. Re-
sults are provided in Figure 1, for the imageLena, with K

fixed to 128. We observe that RD-OMP clearly outperforms
all other algorithms for the entire bitrate range, with a per-
formance gain of up to2 dB. RD-OMP is employed in the
schemes described in the following subsections.

4.2. Dictionary Learning comparison

In this experiment, K-SVD, MOD and EC-DL have been used
to train overcomplete dictionaries. The dictionaries wereall
given as input to RD-OMP, and the results were compared.
We observe that the proposed scheme outperforms the other
two approaches, with gains of the order of2 dB. Results for
the imagePeppers, with K = 256 are shown in Figure 2.

4.3. Compression scheme comparison

As shown in Figure 3, two compression schemes using EC-
DL for dictionary learning and RD-OMP for sparse coding
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Fig. 1. Performance of RD-OMP vs. OMP,K = 128, image
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Fig. 2. Comparison of dictionary learning methods,K =
256, image Peppers

were employed. In scheme 1, for any input image a dictionary
was generated from that same image and then used to perform
sparse coding, followed by the entropy coding of the resulting
coefficients. In such a scenario, the dictionary would need
to be transmitted to the decoder, along with the coefficients.
In scheme 2, as a more practical scheme, a set of training
images was used to build an overcomplete dictionary. The
resulting dictionary was used to encode the test images, which
were not included in the training set. In this experiment, the
set of training images consisted of 18 Kodak natural images
downsampled to128× 128.

In Figures 4 and 5, we present the PSNR-rate comparison
of imagesHarbour andLena for the two mentioned schemes.
We observe that for both images, scheme 1 outperforms other
results. In the presented results, we are not considering the
required bitrate for transmitting the dictionary to the decoder
and these results can be considered as an upper bound of the
performance which can be obtained by the use of a trained
dictionary. According to our calculations, the gain in rate
using this scheme (around 1 bit per pixel) is not enough to
transmit the dictionary to the decoder, therefore this is not a
practical scheme.

In Figures 4 and 5 we also present the results of scheme
2 with dictionary sizes of 128, 256 and 512. As the dictio-
nary size grows, the performance of the encoding scheme in-
creases. For a large enough dictionary, EC-DL will have up
to 2 dB gain compared to DCT.



Fig. 3. Employed compression schemes. Scheme 1: training
and coding with the same image. Scheme 2: training with a
set of natural images and then using the resulting dictionary
to a test image
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Fig. 4. Comparison of compression schemes, Image: Harbour

We also compared scheme 2 against JPEG and JPEG2000.
We observe comparable results to JPEG2000 and perfor-
mance gain of4 dB with respect to JPEG. It is important to
mention that, for the presented results, JPEG and JPEG2000
effectively implement an entropy coder, while our scheme
(as well as the basic DCT framework we use) assumes the
utilization of an optimal entropy coder.

5. CONCLUSION

In this work, we investigated the use of entropy-constrained
overcomplete-based schemes for compression of natural im-
ages. The results show that the presented methods outper-
form the ones based on the commonly employed approaches
for overcomplete-based compression. RD-OMP provides a
gain of up to2 dB with respect to OMP. EC-DL, a method
introduced in this work and its main contribution, improves
the overcomplete dictionary learning process for compres-
sion, with gains in the order of2 dB. Finally, the overall
compression scheme employing a trained dictionary outper-
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Fig. 5. Comparison of compression schemes, Image: Lena

forms a basic DCT scheme when the number of basis vectors
is sufficiently large, with gains of up to2 dB. As future work,
we intend to: a) implement an entropy coder for the proposed
scheme, b) investigate further the trade-offs betweenK and
N , c) extend this scheme to video coding, d) reduce the com-
plexity of the proposed algorithms and e) evaluate our scheme
against directional transforms.
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Appendix

Breakdown of project preparation:
Andre: General simulations, implementations, presenta-

tion slides and project report
Maryam: General simulations, implementations, presen-

tation slides and project report
Ryan: Sparse coding simulations, presentation slides and

proejct report


