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ABSTRACT analyze the use of overcomplete dictionaries for compoassi

) i of natural images.
We introduce an Entropy-Constrained Overcomplete- . .
There are two stages in a general overcomplete coding

Based coding scheme for natural images. The traditional ethod: Sparse Coding and Dictionary Learning, Sparse

overcomplete-based framework for compression is im rove(g] i i .
o P . 1pre: prov: oding assumes an overcomplete dictionary is known and
in its main components. The main contribution of the work is

a new dictionary learning algorithm for overcomplete-lshse seeks the best representation of the input signal. Diatjona
. y 9 alg -omplete-t learning is the process that builds an overcomplete diatipon
compression, referred as Entropy-Constrained Dictionary Knowing the overcomplete dictionary, the sparse coder

Learning. We show that the presented scheme outperformsf.ad tof b Il the dicti tors t
basic DCT coder with gains of up BdB. inds a set of bases among all the dictionary vectors to rep-

resent the given signal. That is to say, given an overcomplet
dictionary A € RV*K  the sparse coder outputs a represen-
1. INTRODUCTION tation of the input signal vectay € R" as the vector of co-
efficientsz € R, such thaty ~ Dz or ||y — Dz||? < e.
Recently, there has been a wide interest in sparse coding of Dictionary Learning works by training a dictionary based
signals using overcomplete dictionaries. The tenercom-  on a set of examples. That is, for a given input set with
plete refers to a set of basis vectors with a size bigger thasamplesy” = y/ ,, it searches the dictionary which will
the one needed to span the data subspace. For a sighdll in |ead to the best representationtéiusing a set of coefficients
such an approach employs basis vectors, witl > N (in- X =z .
stead ofN). The objective of such methods is then to have  |n this work, we propose a compression scheme using the
more basis vector options to select from and therefore a begvercomplete approach. This comprises a proposed entropy-
ter chance of finding a smaller number of basis whose lineaonstrained dictionary learning method and a rate-distort
combination matches the signal vector. Consequently,eat thoptimized sparse coding method, which was initially envis-
entropy coding stage, we expect that fewer bits will be néedeaged in [3].
to code the resulting coefficients. Atter briefly introducing the basic sparse coding methods
In usual lossy compression, with the help of transformin section 2, we present a rate-distortion-based sparse cod
coding, the energy of the signal vector gets compacted in feyag algorithm. In section 3, we describe general dictionary
coefficients. Quantization follows, setting many of thefeoe |earning techniques, discuss their properties and propnse
ficients to zero, being the only stage of the pipeline whichentropy-constrained dictionary learning method. In sect,
introduces distortion. On the other hand, in the overcomye present simulation results of the proposed compression
plete approach, another lossy stage is introduced: thersyst scheme for a set of natural images and compare it to a ba-

being underdetermined, we usually can only get an approxijc DCT-based framework as well as to JPEG and JPEG2000
imation of the signal to represent, due to the constraints imstandards.

posed on finding the solution. However, we will see that these
two stages can be actually integrated in only one, in which

we trade-off distortion and complexity in a Lagrangian cost 2. SPARSE CODING
framework. As we show in this work, that’s the key idea of
using the overcomplete framework for compression. As previously discussed, sparse coding is the process of find

Some work has been done on the compression of imagdsg the best representation of a given signal based on a known
using overcomplete dictionaries [1, 2]. They compare favordictionary. The problem of finding the optimal set of basis
ably in some cases with respect to a basic DCT/JPEG frameectors from a dictionary, according to a certain constrain
work. Nevertheless, the better performance is achieved byia known to be an NP-hard problem [4], so approximate so-
restriction on the nature of the data: in [1], for example, th lutions are needed. One of the highly used greedy optimiza-
application of facial images is considered. In this work, wetion techniques for solving this problem is Matching Pursui



(MP) [5]. We will briefly describe MP and some variants of it 3. DICTIONARY LEARNING

in the following subsections.
Most of the dictionary learning algorithms in the literagur

2.1. Matching Pursuit are a generalization of the K-means algorithm used in vector
quantization training [7]. The learning approach is perfed

Matching Pursuit handles the problem of finding the best coin a two-step process. The first step finds the coefficients for
efficient vectorz for the given input signaj and dictionary  a given dictionary (sparse coding). Then, in the second step
A through a greedy iterative process. At each iteration, MRjiven the coefficient results of the first step, the dictignar
projects the residual (initially, r = y) on all basis vectors of gets updated. This process is repeated until a stoppire crit
A. It chooses the basis that gives maximum projection. Theia is reached. Among many learning methods, we have cho-
projection result is then the coefficient, which is addech® t sen K-SVD and MOD algorithms because they are the most
current vectorz. The residual is updated as= y — Az,  widely employed algorithms and have shown to provide good
and this process is repeated by projecting the new residugésults with a simple framework. In the following subsentio
and picking one new nonzero coefficient in each step. Tweve will briefly introduce these algorithms and, based on them
stopping criteria are commonly used for MP: 1) a predefineénd Entropy-Constrained Vector Quantization (EC-VQ);pro
number of non-zero coefficients is reached, or 2) the norm ghose the “Entropy-Constrained Dictionary Learning” metho
the residual achieves a predefined threshold

At each stage of MP, the orthogonalization of the resid-3_1_ K-SVD
ual with respect to each new selected dictionary component
can introduce components of previously selected basis vet-SVD [8] is one of the highly deployed dictionary learn-
tors into the residual. To avoid that, Orthogonal MP (OMP)ing algorithms. K-SVD has two main parts, the sparse cod-
has been proposed by [6]. In OMP, the least-squares approxirg stage and the dictionary update stage, as shown in Algo-
mation ofy using all currently selected vectors is found. Therithm 1.
residual is calculated as before, with this new set of coeffi-
cients (the previously selected coefficients also changsnwh Algorithm 1 K-SVD
adding a new nonzero coefficient). Compared to MP, this Initialization: Set the dictionary matri(®) € RV*K with
method has shown to result in a smaller number of coeffi- [? normalized columns
cients for a fixed. OMP is the most employed algorithm for  Setn =1
sparse coding in the literature. In this work, we employ OMP  Repeat until stopping rule is satisfied:
as the basic sparse coding algorithm, due to its simplicity a  1.Sparse Coding: Compute the coefficient vectors for

good performance. eachy;, by approximating the solution of:
min,, ||y; — Az;||?,i = 1,2, ..., P subject to
2.2. Rate-Distortion OMP NNZ(z;) < Tp

MP and its variants have been highly used for sparse cod- 2Dictionary Update: For each basis vectok =
ing. The selection process of these, however, is based on 1,2,... K in A1

the minimization of a simple distortion cost. For compres- 2.1Define the group of input vector that uses this basis
sion purposes, it is know that a better approach is to alse con Ector,wk = {i|1<i<Pak(i)+0}

sider the rate cost of the selections, with the widely used La 2.2 Compute the overall representation error matrix
grangian cost/ = D + AR being its standard formulation. Ek —Y -3, d.ad

To deal with this issue, Rate-Distortion OMP (RD-OMP) was g7k~
first suggested in [3] (however, to the best of our knowledge,
it was not used in recent overcomplete-based compression
schemes). In such a scheme only a subset of the coefficient
vector has nonzero value (only these will be coded); thegefo
for every block, the rate is calculated aBj;ock = Ring +
Rcocfts + REo. In €ach block, we need to send the indexes
of the nonzero coefficientd;,.q), their values Rcocf5), and
some control bits to indicate the end of the blo@kg( ).
As Rgop is naturally fixed, it doesn't need to be taken into
account in the sparse coding process. RD-OMP selection pro-

cess stops when the improvement on the ovefralbst is very In the sparse coding stage, any approximation pursuit
small (no need to impose a predefined number of nonzero corethod, i.e. OMP, can be used as long as the resulting
efficients). We will employ RD-OMP in the proposed com- solution satisfies the constraint of fixed and predetermined
pression scheme, and discuss its performance in section 4. number of nonzero coefficientd NZ(x) < Tp. It is worth

(z.: vector of coefficients that uses bakjs
2.3RestrictFEy, to the input vectors correspondingitq,
and obtains

2.4 Apply SVD decompositiorE}t = UAVT,
2.5Choose the updated dictionary basis vedioto be
the first column ofJ/. Update the coefficient vectaf},
to be the first column o¥ multiplied by A(1, 1)

Setn=n-+1




mentioning that these algorithms can be adapted to use
error-based stopping criterion.

In the “Dictionary Update” stage of K-SVD, the multi-
plication AX can be decomposed as the sumrofrank-1
matrices.K
kt" term gets modified. The SVD decomposition finds th
closest rank-1 matrix which approximates the tdtgn This
operation minimizes the erri, — d.«%||?>. The SVD de-
composition ofF;, may violate the sparsity constraint &
is constructed based any, the group of indexes of that
usesdy, i.e., the input samples that use thé& basis vector
are fixed (the nonzero elementsadf remain in the same po-
sition), but the coefficient associated to each of thesegdmn
As stated in the algorithm, the SVD decomposition will résu
in an updated dictionary vectdy,. The corresponding coeffi-

&B. Entropy-Constrained Dictionary Learning

We propose an Entropy-Constrained Dictionary Learning
(EC-DL) algorithm which employs a more appropriate scheme

_ 1 of these terms are assumed to be fixed whilén the context of image compression. This is the main con-

gtribution of this work. As shown in Algorithm 3, in addition
to “Sparse Coding” and “Dictionary Update”, EC-DL in-
troduces a third stage called “Rate Cost Update”. We will
discuss each stage of the algorithm in more details. EC-DL
operates based on a rate-distortion Lagrangian cost apd sto
the iterative learning process if the cost doesn't signifilya
decrease any further.
As discussed in previous subsections, most of the ex-
| isting dictionary learning algorithms are designed based o
distortion-based sparse coding. In section 2, we presented

cient vector gets updated and the same process gets repedidO©MP, an evolution of OMP using a Lagrangian rate-

for every basis vector of the dictionary.

3.2. Method of Optimal Directions (MOD)

distortion framework. This is the algorithm that we use for
the “Sparse Coding” stage of EC-DL.

Algorithm 3 Entropy Constrained Dictionary Learning

The other highly used overcomplete dictionary learning ap- |nitialization: Set the dictionary matrid® € RN <K with

proach in the literature is the Method of Optimal Directions

(MOD) [9]. As shown in Algorithm 2, MOD follows the same

sparse coding approach as K-SVD. However, in the dictionary

updating stage, MOD assumes the coefficient vectéor the

input vectory; is fixed while the dictionary is updated. The

overall Mean Square Error (MSE) is given by:

IEI? = llex, ez, ... ep|* = Y — AX|[? (1)

Taking the derivative of the above formula with respect to A

(Xand Y are fixed)(Y — AX)XT = 0, results in the follow-
ing dictionary update expression:

A = y x O (xOxOT) (D) (2

MOD derives the best possible dictionary adjustment (in
MSE sense) based on (2) for a fixed coefficient makfix

Algorithm 2 MOD

Initialization: Set the dictionary matriA(®) € RV *K with
12 normalized columns
Setn =1
Repeat until stopping rule is satisfied:
Sparse Coding: Compute the coefficient vectors; for
eachy;, by approximating the solution of:

min,, {|ly; — Ax;||?,i = 1,2, ..., P subject to

Dictionary Update: Given the input dat& and coefficient
matrix X ("), update the dictionary as
A+ = y x(m" (x () x(mT)(=1)

Setn =n+1

12 normalized columns
Setn =1, Jyg =
Sparse Coding: Use RD-OMP, as presented in section 2.2.

Rate Cost Update: Update probability mass functions of
coefficients and indexes. Estimate the rate cost of each of
them using the relatioh),, = — log, p(m)

Dictionary Update: Given the input dat&” and coefficient
matrix X "), update the dictionary as
Aln+1) — yx(n)T.(X(")X(n)T)(—l)

Lagrangian cost update: J(™ = D™ 4 \R(")

. (n—1) _ 7(n)
a if < J

= < € then
Stop the algorithm
else
Setn=n+1
go toSparse Coding
end if

Similarly to EC-VQ for training data, after determining
the coefficient matrix, the probability mass functions of th
non-zero coefficients and their corresponding indexesare u
dated in the “Rate Cost Update” stage. Based on these prob-
abilities, the codeword length of the coefficients and the in
dexes are determined usifig = — log, p(m).

In the dictionary update stage of K-SVD, as the dictio-
nary gets modified, the coefficients will vary; so, it is not
possible to control the rate in this stage, therefore reduct
of the Lagrangian cost function is not assured. On the other
hand, MOD updating method provides the optimal adjustment
while preserving the coefficients. The latter is the emplibye



method in EC-DL. Itis interesting to notice again the simila %
ity with EC-VQ, which also assumes fixed coefficients while
updating the representative levels (centroid calculation
All the presented dictionary learning methods have non .
guaranteed convergence. Since the performance of tt H
“Sparse Coding” stage is not optimal, its resulting cost-(La i
grangian or distortion only) might increase. We use a set @
techniques to overcome this difficulty. First, we build the
initial dictionary by picking vectors of the input matrix;, o ez os e
in equally spaced positions, so the dictionary is more repre
s_entati\_/e of the input vec_tors (as opposed to the use of tl"ﬁg. 1. Performance of RD-OMP vs. OMR — 128, image
first K input samples, which could lead to an unsatisfactor
local minimum, especially for images). Second, we always
keep the best dictionary found so far and update it to a newe -
one only if the latter is less costly than the former. Third,
we allow the dictionary search to grow in cost up to some
threshold because some oscillations might occur, and erbett ~
match might be found after them. v

—B— OMP (fixed NNZ=10)

—%— RD-OMP (variable NNZ)|

—&— OMP (fixed NNZ=15) ||

—&— OMP (fixed NNZ=5)
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|
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4. EXPERIMENTS al

Our experiments consisted of simulations with the test esag ° T e’ “

Lena, Boats, Harbour andPeppersof resolution1 28 x 128. To

provide a fair comparison, the entropy coding was performegtig. 2. Comparison of dictionary learning methods, =

identically for every method: using the optimal coder foclea 256, image Peppers

subband. We used blocks of sigex 8 as input data and

guantization stepy, varying from 8 to 128 in all experiments.

The ) factor was calculated using the expresslos 0.2¢>.  were employed. In scheme 1, for any input image a dictionary

Three dictionary sizes{() were employed: 128, 256 and 512. was generated from that same image and then used to perform

In the following subsections, we present results for eathef sparse coding, followed by the entropy coding of the resglti

enhanced algorithms and for the overall compression schemeoefficients. In such a scenario, the dictionary would need

to be transmitted to the decoder, along with the coefficients

4.1. Sparse Coding comparison In scheme 2, as a more practical scheme, a set of training
) images was used to build an overcomplete dictionary. The

We implement OMP and RD-OMP for a performance com-ggjting dictionary was used to encode the testimageshwhi

parison. OMP is used with’ N'Z varying from 510 15. Re-  \yere not included in the training set. In this experimeng, th

sults are provided in Figure 1, for the imagena, with K* e of training images consisted of 18 Kodak natural images
fixed to 128. We observe that RD-OMP clearly OUtperfordeownsampled 328 x 128.

all other algorithms for the entire bitrate range, with a-per
formance gain of up t@ dB. RD-OMP is employed in the
schemes described in the following subsections.

In Figures 4 and 5, we present the PSNR-rate comparison
of imagesHarbour andLena for the two mentioned schemes.
We observe that for both images, scheme 1 outperforms other
results. In the presented results, we are not considermg th
4.2. Dictionary Learning comparison required bitrate for transmitting the dictionary to the deer

In this experiment, K-SVD, MOD and EC-DL have been useg@nd these results can be considered as an upper bound of the
to train overcomplete dictionaries. The dictionaries waite Performance which can be obtained by the use of a trained
given as input to RD-OMP, and the results were comparedlictionary. According to our calculations, the gain in rate
We observe that the proposed scheme outperforms the otH&#ing this scheme (around 1 bit per pixel) is not enough to
two approaches, with gains of the orderXiB. Results for transmit the dictionary to the decoder, therefore this isano

the imagePeppers, with K = 256 are shown in Figure 2. practical scheme.
In Figures 4 and 5 we also present the results of scheme

2 with dictionary sizes of 128, 256 and 512. As the dictio-
nary size grows, the performance of the encoding scheme in-
As shown in Figure 3, two compression schemes using ECzreases. For a large enough dictionary, EC-DL will have up
DL for dictionary learning and RD-OMP for sparse codingto 2 d B gain compared to DCT.

4.3. Compression scheme comparison
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Fig. 5. Comparison of compression schemes, Image: Lena

forms a basic DCT scheme when the number of basis vectors
is sufficiently large, with gains of up todB. As future work,
we intend to: a) implement an entropy coder for the proposed

Fig. 3. Employed compression schemes. Scheme 1: trainin§Cheme, b) inv_estigate furthe_r the trac_je-offs betwEeand
and coding with the same image. Scheme 2: training with &'» €) extend this scheme to video coding, d) reduce the com-
set of natural images and then using the resulting dictionarPlexity of the proposed algorithms and e) evaluate our sehem

to a testimage
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Fig. 4. Comparison of compression schemes, Image: Harbour

We also compared scheme 2 against JPEG and JPEG2000.
We observe comparable results to JPEG2000 and perfor-

mance gain ofl dB with respect to JPEG. It is important to

against directional transforms.
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